src/HOL/ex/Fib.ML
author nipkow
Wed, 30 Aug 2000 16:29:21 +0200
changeset 9747 043098ba5098
parent 9736 332fab43628f
child 9826 5b5d9ee742ca
permissions -rw-r--r--
introduced induct_thm_tac

(*  Title:      HOL/ex/Fib
    ID:         $Id$
    Author:     Lawrence C Paulson
    Copyright   1997  University of Cambridge

Fibonacci numbers: proofs of laws taken from

  R. L. Graham, D. E. Knuth, O. Patashnik.
  Concrete Mathematics.
  (Addison-Wesley, 1989)
*)


(** The difficulty in these proofs is to ensure that the induction hypotheses
    are applied before the definition of "fib".  Towards this end, the 
    "fib" equations are not added to the simpset and are applied very 
    selectively at first.
**)

Delsimps fib.Suc_Suc;

val [fib_Suc_Suc] = fib.Suc_Suc;
val fib_Suc3 = read_instantiate [("x", "(Suc ?n)")] fib_Suc_Suc;

(*Concrete Mathematics, page 280*)
Goal "fib (Suc (n + k)) = fib(Suc k) * fib(Suc n) + fib k * fib n";
by (induct_thm_tac fib.induct "n" 1);
(*Simplify the LHS just enough to apply the induction hypotheses*)
by (asm_full_simp_tac
    (simpset() addsimps [inst "x" "Suc(?m+?n)" fib_Suc_Suc]) 3);
by (ALLGOALS 
    (asm_simp_tac (simpset() addsimps 
		   ([fib_Suc_Suc, add_mult_distrib, add_mult_distrib2]))));
qed "fib_add";


Goal "fib (Suc n) ~= 0";
by (induct_thm_tac fib.induct "n" 1);
by (ALLGOALS (asm_simp_tac (simpset() addsimps [fib_Suc_Suc])));
qed "fib_Suc_neq_0";

(* Also add  0 < fib (Suc n) *)
Addsimps [fib_Suc_neq_0, [neq0_conv, fib_Suc_neq_0] MRS iffD1];

Goal "0<n ==> 0 < fib n";
by (rtac (not0_implies_Suc RS exE) 1);
by Auto_tac;
qed "fib_gr_0";

(*Concrete Mathematics, page 278: Cassini's identity.
  It is much easier to prove using integers!*)
Goal "int (fib (Suc (Suc n)) * fib n) = \
\     (if n mod 2 = 0 then int (fib(Suc n) * fib(Suc n)) - #1 \
\                     else int (fib(Suc n) * fib(Suc n)) + #1)";
by (induct_thm_tac fib.induct "n" 1);
by (simp_tac (simpset() addsimps [fib_Suc_Suc, mod_Suc]) 2);
by (simp_tac (simpset() addsimps [fib_Suc_Suc]) 1);
by (asm_full_simp_tac
     (simpset() addsimps [fib_Suc_Suc, add_mult_distrib, add_mult_distrib2, 
			  mod_Suc, zmult_int RS sym] @ zmult_ac) 1);
qed "fib_Cassini";



(** Towards Law 6.111 of Concrete Mathematics **)

Goal "gcd(fib n, fib (Suc n)) = 1";
by (induct_thm_tac fib.induct "n" 1);
by (asm_simp_tac (simpset() addsimps [fib_Suc3, gcd_commute, gcd_add2]) 3);
by (ALLGOALS (simp_tac (simpset() addsimps [fib_Suc_Suc])));
qed "gcd_fib_Suc_eq_1"; 

val gcd_fib_commute = 
    read_instantiate_sg (sign_of thy) [("m", "fib m")] gcd_commute;

Goal "gcd(fib m, fib (n+m)) = gcd(fib m, fib n)";
by (simp_tac (simpset() addsimps [gcd_fib_commute]) 1);
by (case_tac "m=0" 1);
by (Asm_simp_tac 1);
by (clarify_tac (claset() addSDs [not0_implies_Suc]) 1);
by (simp_tac (simpset() addsimps [fib_add]) 1);
by (asm_simp_tac (simpset() addsimps [add_commute, gcd_non_0]) 1);
by (asm_simp_tac (simpset() addsimps [gcd_non_0 RS sym]) 1);
by (asm_simp_tac (simpset() addsimps [gcd_fib_Suc_eq_1, gcd_mult_cancel]) 1);
qed "gcd_fib_add";

Goal "m <= n ==> gcd(fib m, fib (n-m)) = gcd(fib m, fib n)";
by (rtac (gcd_fib_add RS sym RS trans) 1);
by (Asm_simp_tac 1);
qed "gcd_fib_diff";

Goal "0<m ==> gcd (fib m, fib (n mod m)) = gcd (fib m, fib n)";
by (induct_thm_tac less_induct "n" 1);
by (stac mod_if 1);
by (Asm_simp_tac 1);
by (asm_simp_tac (simpset() addsimps [gcd_fib_diff, mod_geq, 
				      not_less_iff_le, diff_less]) 1);
qed "gcd_fib_mod";

(*Law 6.111*)
Goal "fib(gcd(m,n)) = gcd(fib m, fib n)";
by (induct_thm_tac gcd_induct "m n" 1);
by (Asm_simp_tac 1);
by (asm_full_simp_tac (simpset() addsimps [gcd_non_0]) 1);
by (asm_full_simp_tac (simpset() addsimps [gcd_commute, gcd_fib_mod]) 1);
qed "fib_gcd";