src/ZF/Inductive.thy
author wenzelm
Wed, 26 Sep 2007 19:18:00 +0200
changeset 24725 04b676d1a1fe
parent 22814 4cd25f1706bb
child 24826 78e6a3cea367
permissions -rw-r--r--
Attrib.eval_thms;

(*  Title:      ZF/Inductive.thy
    ID:         $Id$
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
    Copyright   1993  University of Cambridge

Inductive definitions use least fixedpoints with standard products and sums
Coinductive definitions use greatest fixedpoints with Quine products and sums

Sums are used only for mutual recursion;
Products are used only to derive "streamlined" induction rules for relations
*)

header{*Inductive and Coinductive Definitions*}

theory Inductive imports Fixedpt QPair
  uses
    "ind_syntax.ML"
    "Tools/cartprod.ML"
    "Tools/ind_cases.ML"
    "Tools/inductive_package.ML"
    "Tools/induct_tacs.ML"
    "Tools/primrec_package.ML" begin

setup IndCases.setup
setup DatatypeTactics.setup

ML_setup {*
val iT = Ind_Syntax.iT
and oT = FOLogic.oT;

structure Lfp =
  struct
  val oper      = Const("Fixedpt.lfp", [iT,iT-->iT]--->iT)
  val bnd_mono  = Const("Fixedpt.bnd_mono", [iT,iT-->iT]--->oT)
  val bnd_monoI = bnd_monoI
  val subs      = def_lfp_subset
  val Tarski    = def_lfp_unfold
  val induct    = def_induct
  end;

structure Standard_Prod =
  struct
  val sigma     = Const("Sigma", [iT, iT-->iT]--->iT)
  val pair      = Const("Pair", [iT,iT]--->iT)
  val split_name = "split"
  val pair_iff  = Pair_iff
  val split_eq  = split
  val fsplitI   = splitI
  val fsplitD   = splitD
  val fsplitE   = splitE
  end;

structure Standard_CP = CartProd_Fun (Standard_Prod);

structure Standard_Sum =
  struct
  val sum       = Const("op +", [iT,iT]--->iT)
  val inl       = Const("Inl", iT-->iT)
  val inr       = Const("Inr", iT-->iT)
  val elim      = Const("case", [iT-->iT, iT-->iT, iT]--->iT)
  val case_inl  = case_Inl
  val case_inr  = case_Inr
  val inl_iff   = Inl_iff
  val inr_iff   = Inr_iff
  val distinct  = Inl_Inr_iff
  val distinct' = Inr_Inl_iff
  val free_SEs  = Ind_Syntax.mk_free_SEs
            [distinct, distinct', inl_iff, inr_iff, Standard_Prod.pair_iff]
  end;


structure Ind_Package =
    Add_inductive_def_Fun
      (structure Fp=Lfp and Pr=Standard_Prod and CP=Standard_CP
       and Su=Standard_Sum val coind = false);


structure Gfp =
  struct
  val oper      = Const("Fixedpt.gfp", [iT,iT-->iT]--->iT)
  val bnd_mono  = Const("Fixedpt.bnd_mono", [iT,iT-->iT]--->oT)
  val bnd_monoI = bnd_monoI
  val subs      = def_gfp_subset
  val Tarski    = def_gfp_unfold
  val induct    = def_Collect_coinduct
  end;

structure Quine_Prod =
  struct
  val sigma     = Const("QPair.QSigma", [iT, iT-->iT]--->iT)
  val pair      = Const("QPair.QPair", [iT,iT]--->iT)
  val split_name = "QPair.qsplit"
  val pair_iff  = QPair_iff
  val split_eq  = qsplit
  val fsplitI   = qsplitI
  val fsplitD   = qsplitD
  val fsplitE   = qsplitE
  end;

structure Quine_CP = CartProd_Fun (Quine_Prod);

structure Quine_Sum =
  struct
  val sum       = Const("QPair.op <+>", [iT,iT]--->iT)
  val inl       = Const("QPair.QInl", iT-->iT)
  val inr       = Const("QPair.QInr", iT-->iT)
  val elim      = Const("QPair.qcase", [iT-->iT, iT-->iT, iT]--->iT)
  val case_inl  = qcase_QInl
  val case_inr  = qcase_QInr
  val inl_iff   = QInl_iff
  val inr_iff   = QInr_iff
  val distinct  = QInl_QInr_iff
  val distinct' = QInr_QInl_iff
  val free_SEs  = Ind_Syntax.mk_free_SEs
            [distinct, distinct', inl_iff, inr_iff, Quine_Prod.pair_iff]
  end;


structure CoInd_Package =
  Add_inductive_def_Fun(structure Fp=Gfp and Pr=Quine_Prod and CP=Quine_CP
    and Su=Quine_Sum val coind = true);

*}

end