(* Title: HOL/Predicate_Compile.thy
Author: Stefan Berghofer, Lukas Bulwahn, Florian Haftmann, TU Muenchen
*)
header {* A compiler for predicates defined by introduction rules *}
theory Predicate_Compile
imports Random_Sequence Quickcheck_Exhaustive
keywords "code_pred" :: thy_goal and "values" :: diag
begin
ML_file "Tools/Predicate_Compile/predicate_compile_aux.ML"
ML_file "Tools/Predicate_Compile/predicate_compile_compilations.ML"
ML_file "Tools/Predicate_Compile/core_data.ML"
ML_file "Tools/Predicate_Compile/mode_inference.ML"
ML_file "Tools/Predicate_Compile/predicate_compile_proof.ML"
ML_file "Tools/Predicate_Compile/predicate_compile_core.ML"
ML_file "Tools/Predicate_Compile/predicate_compile_data.ML"
ML_file "Tools/Predicate_Compile/predicate_compile_fun.ML"
ML_file "Tools/Predicate_Compile/predicate_compile_pred.ML"
ML_file "Tools/Predicate_Compile/predicate_compile_specialisation.ML"
ML_file "Tools/Predicate_Compile/predicate_compile.ML"
setup Predicate_Compile.setup
subsection {* Set membership as a generator predicate *}
text {*
Introduce a new constant for membership to allow
fine-grained control in code equations.
*}
definition contains :: "'a set => 'a => bool"
where "contains A x \<longleftrightarrow> x : A"
definition contains_pred :: "'a set => 'a => unit Predicate.pred"
where "contains_pred A x = (if x : A then Predicate.single () else bot)"
lemma pred_of_setE:
assumes "Predicate.eval (pred_of_set A) x"
obtains "contains A x"
using assms by(simp add: contains_def)
lemma pred_of_setI: "contains A x ==> Predicate.eval (pred_of_set A) x"
by(simp add: contains_def)
lemma pred_of_set_eq: "pred_of_set \<equiv> \<lambda>A. Predicate.Pred (contains A)"
by(simp add: contains_def[abs_def] pred_of_set_def o_def)
lemma containsI: "x \<in> A ==> contains A x"
by(simp add: contains_def)
lemma containsE: assumes "contains A x"
obtains A' x' where "A = A'" "x = x'" "x : A"
using assms by(simp add: contains_def)
lemma contains_predI: "contains A x ==> Predicate.eval (contains_pred A x) ()"
by(simp add: contains_pred_def contains_def)
lemma contains_predE:
assumes "Predicate.eval (contains_pred A x) y"
obtains "contains A x"
using assms by(simp add: contains_pred_def contains_def split: split_if_asm)
lemma contains_pred_eq: "contains_pred \<equiv> \<lambda>A x. Predicate.Pred (\<lambda>y. contains A x)"
by(rule eq_reflection)(auto simp add: contains_pred_def fun_eq_iff contains_def intro: pred_eqI)
lemma contains_pred_notI:
"\<not> contains A x ==> Predicate.eval (Predicate.not_pred (contains_pred A x)) ()"
by(simp add: contains_pred_def contains_def not_pred_eq)
setup {*
let
val Fun = Predicate_Compile_Aux.Fun
val Input = Predicate_Compile_Aux.Input
val Output = Predicate_Compile_Aux.Output
val Bool = Predicate_Compile_Aux.Bool
val io = Fun (Input, Fun (Output, Bool))
val ii = Fun (Input, Fun (Input, Bool))
in
Core_Data.PredData.map (Graph.new_node
(@{const_name contains},
Core_Data.PredData {
intros = [(NONE, @{thm containsI})],
elim = SOME @{thm containsE},
preprocessed = true,
function_names = [(Predicate_Compile_Aux.Pred,
[(io, @{const_name pred_of_set}), (ii, @{const_name contains_pred})])],
predfun_data = [
(io, Core_Data.PredfunData {
elim = @{thm pred_of_setE}, intro = @{thm pred_of_setI},
neg_intro = NONE, definition = @{thm pred_of_set_eq}
}),
(ii, Core_Data.PredfunData {
elim = @{thm contains_predE}, intro = @{thm contains_predI},
neg_intro = SOME @{thm contains_pred_notI}, definition = @{thm contains_pred_eq}
})],
needs_random = []}))
end
*}
hide_const (open) contains contains_pred
hide_fact (open) pred_of_setE pred_of_setI pred_of_set_eq
containsI containsE contains_predI contains_predE contains_pred_eq contains_pred_notI
end