(* Author: Lukas Bulwahn, TU Muenchen *)
header {* A simple counterexample generator performing exhaustive testing *}
theory Quickcheck_Exhaustive
imports Quickcheck_Random
keywords "quickcheck_generator" :: thy_decl
begin
subsection {* basic operations for exhaustive generators *}
definition orelse :: "'a option => 'a option => 'a option" (infixr "orelse" 55)
where
[code_unfold]: "x orelse y = (case x of Some x' => Some x' | None => y)"
subsection {* exhaustive generator type classes *}
class exhaustive = term_of +
fixes exhaustive :: "('a \<Rightarrow> (bool * term list) option) \<Rightarrow> natural \<Rightarrow> (bool * term list) option"
class full_exhaustive = term_of +
fixes full_exhaustive :: "('a * (unit => term) \<Rightarrow> (bool * term list) option) \<Rightarrow> natural \<Rightarrow> (bool * term list) option"
instantiation natural :: full_exhaustive
begin
function full_exhaustive_natural' :: "(natural * (unit => term) => (bool * term list) option) => natural => natural => (bool * term list) option"
where "full_exhaustive_natural' f d i =
(if d < i then None
else (f (i, %_. Code_Evaluation.term_of i)) orelse (full_exhaustive_natural' f d (i + 1)))"
by pat_completeness auto
termination
by (relation "measure (%(_, d, i). nat_of_natural (d + 1 - i))")
(auto simp add: less_natural_def)
definition "full_exhaustive f d = full_exhaustive_natural' f d 0"
instance ..
end
instantiation natural :: exhaustive
begin
function exhaustive_natural' :: "(natural => (bool * term list) option) => natural => natural => (bool * term list) option"
where "exhaustive_natural' f d i =
(if d < i then None
else (f i orelse exhaustive_natural' f d (i + 1)))"
by pat_completeness auto
termination
by (relation "measure (%(_, d, i). nat_of_natural (d + 1 - i))")
(auto simp add: less_natural_def)
definition "exhaustive f d = exhaustive_natural' f d 0"
instance ..
end
instantiation integer :: exhaustive
begin
function exhaustive_integer' :: "(integer => (bool * term list) option) => integer => integer => (bool * term list) option"
where "exhaustive_integer' f d i = (if d < i then None else (f i orelse exhaustive_integer' f d (i + 1)))"
by pat_completeness auto
termination
by (relation "measure (%(_, d, i). nat_of_integer (d + 1 - i))")
(auto simp add: less_integer_def nat_of_integer_def)
definition "exhaustive f d = exhaustive_integer' f (integer_of_natural d) (- (integer_of_natural d))"
instance ..
end
instantiation integer :: full_exhaustive
begin
function full_exhaustive_integer' :: "(integer * (unit => term) => (bool * term list) option) => integer => integer => (bool * term list) option"
where "full_exhaustive_integer' f d i = (if d < i then None else (case f (i, %_. Code_Evaluation.term_of i) of Some t => Some t | None => full_exhaustive_integer' f d (i + 1)))"
by pat_completeness auto
termination
by (relation "measure (%(_, d, i). nat_of_integer (d + 1 - i))")
(auto simp add: less_integer_def nat_of_integer_def)
definition "full_exhaustive f d = full_exhaustive_integer' f (integer_of_natural d) (- (integer_of_natural d))"
instance ..
end
instantiation nat :: exhaustive
begin
definition "exhaustive f d = exhaustive (%x. f (nat_of_natural x)) d"
instance ..
end
instantiation nat :: full_exhaustive
begin
definition "full_exhaustive f d = full_exhaustive (%(x, xt). f (nat_of_natural x, %_. Code_Evaluation.term_of (nat_of_natural x))) d"
instance ..
end
instantiation int :: exhaustive
begin
function exhaustive_int' :: "(int => (bool * term list) option) => int => int => (bool * term list) option"
where "exhaustive_int' f d i = (if d < i then None else (f i orelse exhaustive_int' f d (i + 1)))"
by pat_completeness auto
termination
by (relation "measure (%(_, d, i). nat (d + 1 - i))") auto
definition "exhaustive f d = exhaustive_int' f (int_of_integer (integer_of_natural d))
(- (int_of_integer (integer_of_natural d)))"
instance ..
end
instantiation int :: full_exhaustive
begin
function full_exhaustive_int' :: "(int * (unit => term) => (bool * term list) option) => int => int => (bool * term list) option"
where "full_exhaustive_int' f d i = (if d < i then None else (case f (i, %_. Code_Evaluation.term_of i) of Some t => Some t | None => full_exhaustive_int' f d (i + 1)))"
by pat_completeness auto
termination
by (relation "measure (%(_, d, i). nat (d + 1 - i))") auto
definition "full_exhaustive f d = full_exhaustive_int' f (int_of_integer (integer_of_natural d))
(- (int_of_integer (integer_of_natural d)))"
instance ..
end
instantiation prod :: (exhaustive, exhaustive) exhaustive
begin
definition
"exhaustive f d = exhaustive (%x. exhaustive (%y. f ((x, y))) d) d"
instance ..
end
definition (in term_syntax) [code_unfold]: "valtermify_pair x y = Code_Evaluation.valtermify (Pair :: 'a :: typerep => 'b :: typerep => 'a * 'b) {\<cdot>} x {\<cdot>} y"
instantiation prod :: (full_exhaustive, full_exhaustive) full_exhaustive
begin
definition
"full_exhaustive f d = full_exhaustive (%x. full_exhaustive (%y. f (valtermify_pair x y)) d) d"
instance ..
end
instantiation set :: (exhaustive) exhaustive
begin
fun exhaustive_set
where
"exhaustive_set f i = (if i = 0 then None else (f {} orelse exhaustive_set (%A. f A orelse exhaustive (%x. if x \<in> A then None else f (insert x A)) (i - 1)) (i - 1)))"
instance ..
end
instantiation set :: (full_exhaustive) full_exhaustive
begin
fun full_exhaustive_set
where
"full_exhaustive_set f i = (if i = 0 then None else (f valterm_emptyset orelse full_exhaustive_set (%A. f A orelse Quickcheck_Exhaustive.full_exhaustive (%x. if fst x \<in> fst A then None else f (valtermify_insert x A)) (i - 1)) (i - 1)))"
instance ..
end
instantiation "fun" :: ("{equal, exhaustive}", exhaustive) exhaustive
begin
fun exhaustive_fun' :: "(('a => 'b) => (bool * term list) option) => natural => natural => (bool * term list) option"
where
"exhaustive_fun' f i d = (exhaustive (%b. f (%_. b)) d)
orelse (if i > 1 then
exhaustive_fun' (%g. exhaustive (%a. exhaustive (%b.
f (g(a := b))) d) d) (i - 1) d else None)"
definition exhaustive_fun :: "(('a => 'b) => (bool * term list) option) => natural => (bool * term list) option"
where
"exhaustive_fun f d = exhaustive_fun' f d d"
instance ..
end
definition [code_unfold]: "valtermify_absdummy = (%(v, t). (%_::'a. v, %u::unit. Code_Evaluation.Abs (STR ''x'') (Typerep.typerep TYPE('a::typerep)) (t ())))"
definition (in term_syntax) [code_unfold]: "valtermify_fun_upd g a b = Code_Evaluation.valtermify (fun_upd :: ('a :: typerep => 'b :: typerep) => 'a => 'b => 'a => 'b) {\<cdot>} g {\<cdot>} a {\<cdot>} b"
instantiation "fun" :: ("{equal, full_exhaustive}", full_exhaustive) full_exhaustive
begin
fun full_exhaustive_fun' :: "(('a => 'b) * (unit => term) => (bool * term list) option) => natural => natural => (bool * term list) option"
where
"full_exhaustive_fun' f i d = (full_exhaustive (%v. f (valtermify_absdummy v)) d)
orelse (if i > 1 then
full_exhaustive_fun' (%g. full_exhaustive (%a. full_exhaustive (%b.
f (valtermify_fun_upd g a b)) d) d) (i - 1) d else None)"
definition full_exhaustive_fun :: "(('a => 'b) * (unit => term) => (bool * term list) option) => natural => (bool * term list) option"
where
"full_exhaustive_fun f d = full_exhaustive_fun' f d d"
instance ..
end
subsubsection {* A smarter enumeration scheme for functions over finite datatypes *}
class check_all = enum + term_of +
fixes check_all :: "('a * (unit \<Rightarrow> term) \<Rightarrow> (bool * term list) option) \<Rightarrow> (bool * term list) option"
fixes enum_term_of :: "'a itself \<Rightarrow> unit \<Rightarrow> term list"
fun check_all_n_lists :: "(('a :: check_all) list * (unit \<Rightarrow> term list) \<Rightarrow> (bool * term list) option) \<Rightarrow> natural \<Rightarrow> (bool * term list) option"
where
"check_all_n_lists f n =
(if n = 0 then f ([], (%_. [])) else check_all (%(x, xt). check_all_n_lists (%(xs, xst). f ((x # xs), (%_. (xt () # xst ())))) (n - 1)))"
definition (in term_syntax) [code_unfold]: "termify_fun_upd g a b = (Code_Evaluation.termify (fun_upd :: ('a :: typerep => 'b :: typerep) => 'a => 'b => 'a => 'b) <\<cdot>> g <\<cdot>> a <\<cdot>> b)"
definition mk_map_term :: " (unit \<Rightarrow> typerep) \<Rightarrow> (unit \<Rightarrow> typerep) \<Rightarrow> (unit \<Rightarrow> term list) \<Rightarrow> (unit \<Rightarrow> term list) \<Rightarrow> unit \<Rightarrow> term"
where
"mk_map_term T1 T2 domm rng =
(%_. let T1 = T1 ();
T2 = T2 ();
update_term = (%g (a, b).
Code_Evaluation.App (Code_Evaluation.App (Code_Evaluation.App
(Code_Evaluation.Const (STR ''Fun.fun_upd'')
(Typerep.Typerep (STR ''fun'') [Typerep.Typerep (STR ''fun'') [T1, T2],
Typerep.Typerep (STR ''fun'') [T1,
Typerep.Typerep (STR ''fun'') [T2, Typerep.Typerep (STR ''fun'') [T1, T2]]]]))
g) a) b)
in
List.foldl update_term (Code_Evaluation.Abs (STR ''x'') T1 (Code_Evaluation.Const (STR ''HOL.undefined'') T2)) (zip (domm ()) (rng ())))"
instantiation "fun" :: ("{equal, check_all}", check_all) check_all
begin
definition
"check_all f =
(let
mk_term = mk_map_term (%_. Typerep.typerep (TYPE('a))) (%_. Typerep.typerep (TYPE('b))) (enum_term_of (TYPE('a)));
enum = (Enum.enum :: 'a list)
in check_all_n_lists (\<lambda>(ys, yst). f (the o map_of (zip enum ys), mk_term yst)) (natural_of_nat (length enum)))"
definition enum_term_of_fun :: "('a => 'b) itself => unit => term list"
where
"enum_term_of_fun = (%_ _. let
enum_term_of_a = enum_term_of (TYPE('a));
mk_term = mk_map_term (%_. Typerep.typerep (TYPE('a))) (%_. Typerep.typerep (TYPE('b))) enum_term_of_a
in map (%ys. mk_term (%_. ys) ()) (List.n_lists (length (enum_term_of_a ())) (enum_term_of (TYPE('b)) ())))"
instance ..
end
fun (in term_syntax) check_all_subsets :: "(('a :: typerep) set * (unit => term) => (bool * term list) option) => ('a * (unit => term)) list => (bool * term list) option"
where
"check_all_subsets f [] = f valterm_emptyset"
| "check_all_subsets f (x # xs) = check_all_subsets (%s. case f s of Some ts => Some ts | None => f (valtermify_insert x s)) xs"
definition (in term_syntax) [code_unfold]: "term_emptyset = Code_Evaluation.termify ({} :: ('a :: typerep) set)"
definition (in term_syntax) [code_unfold]: "termify_insert x s = Code_Evaluation.termify (insert :: ('a::typerep) => 'a set => 'a set) <\<cdot>> x <\<cdot>> s"
definition (in term_syntax) setify :: "('a::typerep) itself => term list => term"
where
"setify T ts = foldr (termify_insert T) ts (term_emptyset T)"
instantiation set :: (check_all) check_all
begin
definition
"check_all_set f =
check_all_subsets f (zip (Enum.enum :: 'a list) (map (%a. %u :: unit. a) (Quickcheck_Exhaustive.enum_term_of (TYPE ('a)) ())))"
definition enum_term_of_set :: "'a set itself => unit => term list"
where
"enum_term_of_set _ _ = map (setify (TYPE('a))) (sublists (Quickcheck_Exhaustive.enum_term_of (TYPE('a)) ()))"
instance ..
end
instantiation unit :: check_all
begin
definition
"check_all f = f (Code_Evaluation.valtermify ())"
definition enum_term_of_unit :: "unit itself => unit => term list"
where
"enum_term_of_unit = (%_ _. [Code_Evaluation.term_of ()])"
instance ..
end
instantiation bool :: check_all
begin
definition
"check_all f = (case f (Code_Evaluation.valtermify False) of Some x' \<Rightarrow> Some x' | None \<Rightarrow> f (Code_Evaluation.valtermify True))"
definition enum_term_of_bool :: "bool itself => unit => term list"
where
"enum_term_of_bool = (%_ _. map Code_Evaluation.term_of (Enum.enum :: bool list))"
instance ..
end
definition (in term_syntax) [code_unfold]: "termify_pair x y = Code_Evaluation.termify (Pair :: 'a :: typerep => 'b :: typerep => 'a * 'b) <\<cdot>> x <\<cdot>> y"
instantiation prod :: (check_all, check_all) check_all
begin
definition
"check_all f = check_all (%x. check_all (%y. f (valtermify_pair x y)))"
definition enum_term_of_prod :: "('a * 'b) itself => unit => term list"
where
"enum_term_of_prod = (%_ _. map (%(x, y). termify_pair TYPE('a) TYPE('b) x y)
(List.product (enum_term_of (TYPE('a)) ()) (enum_term_of (TYPE('b)) ())))"
instance ..
end
definition (in term_syntax) [code_unfold]: "valtermify_Inl x = Code_Evaluation.valtermify (Inl :: 'a :: typerep => 'a + 'b :: typerep) {\<cdot>} x"
definition (in term_syntax) [code_unfold]: "valtermify_Inr x = Code_Evaluation.valtermify (Inr :: 'b :: typerep => 'a ::typerep + 'b) {\<cdot>} x"
instantiation sum :: (check_all, check_all) check_all
begin
definition
"check_all f = check_all (%a. f (valtermify_Inl a)) orelse check_all (%b. f (valtermify_Inr b))"
definition enum_term_of_sum :: "('a + 'b) itself => unit => term list"
where
"enum_term_of_sum = (%_ _.
let
T1 = (Typerep.typerep (TYPE('a)));
T2 = (Typerep.typerep (TYPE('b)))
in
map (Code_Evaluation.App (Code_Evaluation.Const (STR ''Sum_Type.Inl'')
(Typerep.Typerep (STR ''fun'') [T1, Typerep.Typerep (STR ''Sum_Type.sum'') [T1, T2]])))
(enum_term_of (TYPE('a)) ()) @
map (Code_Evaluation.App (Code_Evaluation.Const (STR ''Sum_Type.Inr'')
(Typerep.Typerep (STR ''fun'') [T2, Typerep.Typerep (STR ''Sum_Type.sum'') [T1, T2]])))
(enum_term_of (TYPE('b)) ()))"
instance ..
end
instantiation nibble :: check_all
begin
definition
"check_all f =
f (Code_Evaluation.valtermify Nibble0) orelse
f (Code_Evaluation.valtermify Nibble1) orelse
f (Code_Evaluation.valtermify Nibble2) orelse
f (Code_Evaluation.valtermify Nibble3) orelse
f (Code_Evaluation.valtermify Nibble4) orelse
f (Code_Evaluation.valtermify Nibble5) orelse
f (Code_Evaluation.valtermify Nibble6) orelse
f (Code_Evaluation.valtermify Nibble7) orelse
f (Code_Evaluation.valtermify Nibble8) orelse
f (Code_Evaluation.valtermify Nibble9) orelse
f (Code_Evaluation.valtermify NibbleA) orelse
f (Code_Evaluation.valtermify NibbleB) orelse
f (Code_Evaluation.valtermify NibbleC) orelse
f (Code_Evaluation.valtermify NibbleD) orelse
f (Code_Evaluation.valtermify NibbleE) orelse
f (Code_Evaluation.valtermify NibbleF)"
definition enum_term_of_nibble :: "nibble itself => unit => term list"
where
"enum_term_of_nibble = (%_ _. map Code_Evaluation.term_of (Enum.enum :: nibble list))"
instance ..
end
instantiation char :: check_all
begin
definition
"check_all f = check_all (%(x, t1). check_all (%(y, t2). f (Char x y, %_. Code_Evaluation.App (Code_Evaluation.App (Code_Evaluation.term_of Char) (t1 ())) (t2 ()))))"
definition enum_term_of_char :: "char itself => unit => term list"
where
"enum_term_of_char = (%_ _. map Code_Evaluation.term_of (Enum.enum :: char list))"
instance ..
end
instantiation option :: (check_all) check_all
begin
definition
"check_all f = f (Code_Evaluation.valtermify (None :: 'a option)) orelse check_all (%(x, t). f (Some x, %_. Code_Evaluation.App
(Code_Evaluation.Const (STR ''Option.option.Some'')
(Typerep.Typerep (STR ''fun'') [Typerep.typerep TYPE('a), Typerep.Typerep (STR ''Option.option'') [Typerep.typerep TYPE('a)]])) (t ())))"
definition enum_term_of_option :: "'a option itself => unit => term list"
where
"enum_term_of_option = (% _ _. (Code_Evaluation.term_of (None :: 'a option)) # (map (Code_Evaluation.App (Code_Evaluation.Const (STR ''Option.option.Some'')
(Typerep.Typerep (STR ''fun'') [Typerep.typerep TYPE('a), Typerep.Typerep (STR ''Option.option'') [Typerep.typerep TYPE('a)]]))) (enum_term_of (TYPE('a)) ())))"
instance ..
end
instantiation Enum.finite_1 :: check_all
begin
definition
"check_all f = f (Code_Evaluation.valtermify Enum.finite_1.a\<^sub>1)"
definition enum_term_of_finite_1 :: "Enum.finite_1 itself => unit => term list"
where
"enum_term_of_finite_1 = (%_ _. [Code_Evaluation.term_of Enum.finite_1.a\<^sub>1])"
instance ..
end
instantiation Enum.finite_2 :: check_all
begin
definition
"check_all f = (f (Code_Evaluation.valtermify Enum.finite_2.a\<^sub>1)
orelse f (Code_Evaluation.valtermify Enum.finite_2.a\<^sub>2))"
definition enum_term_of_finite_2 :: "Enum.finite_2 itself => unit => term list"
where
"enum_term_of_finite_2 = (%_ _. map Code_Evaluation.term_of (Enum.enum :: Enum.finite_2 list))"
instance ..
end
instantiation Enum.finite_3 :: check_all
begin
definition
"check_all f = (f (Code_Evaluation.valtermify Enum.finite_3.a\<^sub>1)
orelse f (Code_Evaluation.valtermify Enum.finite_3.a\<^sub>2)
orelse f (Code_Evaluation.valtermify Enum.finite_3.a\<^sub>3))"
definition enum_term_of_finite_3 :: "Enum.finite_3 itself => unit => term list"
where
"enum_term_of_finite_3 = (%_ _. map Code_Evaluation.term_of (Enum.enum :: Enum.finite_3 list))"
instance ..
end
instantiation Enum.finite_4 :: check_all
begin
definition
"check_all f = (f (Code_Evaluation.valtermify Enum.finite_4.a\<^sub>1)
orelse f (Code_Evaluation.valtermify Enum.finite_4.a\<^sub>2)
orelse f (Code_Evaluation.valtermify Enum.finite_4.a\<^sub>3)
orelse f (Code_Evaluation.valtermify Enum.finite_4.a\<^sub>4))"
definition enum_term_of_finite_4 :: "Enum.finite_4 itself => unit => term list"
where
"enum_term_of_finite_4 = (%_ _. map Code_Evaluation.term_of (Enum.enum :: Enum.finite_4 list))"
instance ..
end
subsection {* Bounded universal quantifiers *}
class bounded_forall =
fixes bounded_forall :: "('a \<Rightarrow> bool) \<Rightarrow> natural \<Rightarrow> bool"
subsection {* Fast exhaustive combinators *}
class fast_exhaustive = term_of +
fixes fast_exhaustive :: "('a \<Rightarrow> unit) \<Rightarrow> natural \<Rightarrow> unit"
axiomatization throw_Counterexample :: "term list => unit"
axiomatization catch_Counterexample :: "unit => term list option"
code_printing
constant throw_Counterexample \<rightharpoonup>
(Quickcheck) "raise (Exhaustive'_Generators.Counterexample _)"
| constant catch_Counterexample \<rightharpoonup>
(Quickcheck) "(((_); NONE) handle Exhaustive'_Generators.Counterexample ts => SOME ts)"
subsection {* Continuation passing style functions as plus monad *}
type_synonym 'a cps = "('a => term list option) => term list option"
definition cps_empty :: "'a cps"
where
"cps_empty = (%cont. None)"
definition cps_single :: "'a => 'a cps"
where
"cps_single v = (%cont. cont v)"
definition cps_bind :: "'a cps => ('a => 'b cps) => 'b cps"
where
"cps_bind m f = (%cont. m (%a. (f a) cont))"
definition cps_plus :: "'a cps => 'a cps => 'a cps"
where
"cps_plus a b = (%c. case a c of None => b c | Some x => Some x)"
definition cps_if :: "bool => unit cps"
where
"cps_if b = (if b then cps_single () else cps_empty)"
definition cps_not :: "unit cps => unit cps"
where
"cps_not n = (%c. case n (%u. Some []) of None => c () | Some _ => None)"
type_synonym 'a pos_bound_cps = "('a => (bool * term list) option) => natural => (bool * term list) option"
definition pos_bound_cps_empty :: "'a pos_bound_cps"
where
"pos_bound_cps_empty = (%cont i. None)"
definition pos_bound_cps_single :: "'a => 'a pos_bound_cps"
where
"pos_bound_cps_single v = (%cont i. cont v)"
definition pos_bound_cps_bind :: "'a pos_bound_cps => ('a => 'b pos_bound_cps) => 'b pos_bound_cps"
where
"pos_bound_cps_bind m f = (%cont i. if i = 0 then None else (m (%a. (f a) cont i) (i - 1)))"
definition pos_bound_cps_plus :: "'a pos_bound_cps => 'a pos_bound_cps => 'a pos_bound_cps"
where
"pos_bound_cps_plus a b = (%c i. case a c i of None => b c i | Some x => Some x)"
definition pos_bound_cps_if :: "bool => unit pos_bound_cps"
where
"pos_bound_cps_if b = (if b then pos_bound_cps_single () else pos_bound_cps_empty)"
datatype 'a unknown = Unknown | Known 'a
datatype 'a three_valued = Unknown_value | Value 'a | No_value
type_synonym 'a neg_bound_cps = "('a unknown => term list three_valued) => natural => term list three_valued"
definition neg_bound_cps_empty :: "'a neg_bound_cps"
where
"neg_bound_cps_empty = (%cont i. No_value)"
definition neg_bound_cps_single :: "'a => 'a neg_bound_cps"
where
"neg_bound_cps_single v = (%cont i. cont (Known v))"
definition neg_bound_cps_bind :: "'a neg_bound_cps => ('a => 'b neg_bound_cps) => 'b neg_bound_cps"
where
"neg_bound_cps_bind m f = (%cont i. if i = 0 then cont Unknown else m (%a. case a of Unknown => cont Unknown | Known a' => f a' cont i) (i - 1))"
definition neg_bound_cps_plus :: "'a neg_bound_cps => 'a neg_bound_cps => 'a neg_bound_cps"
where
"neg_bound_cps_plus a b = (%c i. case a c i of No_value => b c i | Value x => Value x | Unknown_value => (case b c i of No_value => Unknown_value | Value x => Value x | Unknown_value => Unknown_value))"
definition neg_bound_cps_if :: "bool => unit neg_bound_cps"
where
"neg_bound_cps_if b = (if b then neg_bound_cps_single () else neg_bound_cps_empty)"
definition neg_bound_cps_not :: "unit pos_bound_cps => unit neg_bound_cps"
where
"neg_bound_cps_not n = (%c i. case n (%u. Some (True, [])) i of None => c (Known ()) | Some _ => No_value)"
definition pos_bound_cps_not :: "unit neg_bound_cps => unit pos_bound_cps"
where
"pos_bound_cps_not n = (%c i. case n (%u. Value []) i of No_value => c () | Value _ => None | Unknown_value => None)"
subsection {* Defining generators for any first-order data type *}
axiomatization unknown :: 'a
notation (output) unknown ("?")
ML_file "Tools/Quickcheck/exhaustive_generators.ML"
setup {* Exhaustive_Generators.setup *}
declare [[quickcheck_batch_tester = exhaustive]]
subsection {* Defining generators for abstract types *}
ML_file "Tools/Quickcheck/abstract_generators.ML"
hide_fact (open) orelse_def
no_notation orelse (infixr "orelse" 55)
hide_fact
exhaustive_int'_def
exhaustive_integer'_def
exhaustive_natural'_def
hide_const valtermify_absdummy valtermify_fun_upd valterm_emptyset valtermify_insert valtermify_pair
valtermify_Inl valtermify_Inr
termify_fun_upd term_emptyset termify_insert termify_pair setify
hide_const (open)
exhaustive full_exhaustive
exhaustive_int' full_exhaustive_int'
exhaustive_integer' full_exhaustive_integer'
exhaustive_natural' full_exhaustive_natural'
throw_Counterexample catch_Counterexample
check_all enum_term_of
orelse unknown mk_map_term check_all_n_lists check_all_subsets
hide_type (open) cps pos_bound_cps neg_bound_cps unknown three_valued
hide_const (open) cps_empty cps_single cps_bind cps_plus cps_if cps_not
pos_bound_cps_empty pos_bound_cps_single pos_bound_cps_bind pos_bound_cps_plus pos_bound_cps_if pos_bound_cps_not
neg_bound_cps_empty neg_bound_cps_single neg_bound_cps_bind neg_bound_cps_plus neg_bound_cps_if neg_bound_cps_not
Unknown Known Unknown_value Value No_value
end