(* Title: HOL/Transfer.thy
Author: Brian Huffman, TU Muenchen
Author: Ondrej Kuncar, TU Muenchen
*)
header {* Generic theorem transfer using relations *}
theory Transfer
imports Hilbert_Choice
begin
subsection {* Relator for function space *}
definition
fun_rel :: "('a \<Rightarrow> 'c \<Rightarrow> bool) \<Rightarrow> ('b \<Rightarrow> 'd \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('c \<Rightarrow> 'd) \<Rightarrow> bool"
where
"fun_rel A B = (\<lambda>f g. \<forall>x y. A x y \<longrightarrow> B (f x) (g y))"
locale lifting_syntax
begin
notation fun_rel (infixr "===>" 55)
notation map_fun (infixr "--->" 55)
end
context
begin
interpretation lifting_syntax .
lemma fun_relI [intro]:
assumes "\<And>x y. A x y \<Longrightarrow> B (f x) (g y)"
shows "(A ===> B) f g"
using assms by (simp add: fun_rel_def)
lemma fun_relD:
assumes "(A ===> B) f g" and "A x y"
shows "B (f x) (g y)"
using assms by (simp add: fun_rel_def)
lemma fun_relD2:
assumes "(A ===> B) f g" and "A x x"
shows "B (f x) (g x)"
using assms unfolding fun_rel_def by auto
lemma fun_relE:
assumes "(A ===> B) f g" and "A x y"
obtains "B (f x) (g y)"
using assms by (simp add: fun_rel_def)
lemma fun_rel_eq:
shows "((op =) ===> (op =)) = (op =)"
by (auto simp add: fun_eq_iff elim: fun_relE)
lemma fun_rel_eq_rel:
shows "((op =) ===> R) = (\<lambda>f g. \<forall>x. R (f x) (g x))"
by (simp add: fun_rel_def)
subsection {* Transfer method *}
text {* Explicit tag for relation membership allows for
backward proof methods. *}
definition Rel :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> bool"
where "Rel r \<equiv> r"
text {* Handling of equality relations *}
definition is_equality :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> bool"
where "is_equality R \<longleftrightarrow> R = (op =)"
lemma is_equality_eq: "is_equality (op =)"
unfolding is_equality_def by simp
text {* Reverse implication for monotonicity rules *}
definition rev_implies where
"rev_implies x y \<longleftrightarrow> (y \<longrightarrow> x)"
text {* Handling of meta-logic connectives *}
definition transfer_forall where
"transfer_forall \<equiv> All"
definition transfer_implies where
"transfer_implies \<equiv> op \<longrightarrow>"
definition transfer_bforall :: "('a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> bool"
where "transfer_bforall \<equiv> (\<lambda>P Q. \<forall>x. P x \<longrightarrow> Q x)"
lemma transfer_forall_eq: "(\<And>x. P x) \<equiv> Trueprop (transfer_forall (\<lambda>x. P x))"
unfolding atomize_all transfer_forall_def ..
lemma transfer_implies_eq: "(A \<Longrightarrow> B) \<equiv> Trueprop (transfer_implies A B)"
unfolding atomize_imp transfer_implies_def ..
lemma transfer_bforall_unfold:
"Trueprop (transfer_bforall P (\<lambda>x. Q x)) \<equiv> (\<And>x. P x \<Longrightarrow> Q x)"
unfolding transfer_bforall_def atomize_imp atomize_all ..
lemma transfer_start: "\<lbrakk>P; Rel (op =) P Q\<rbrakk> \<Longrightarrow> Q"
unfolding Rel_def by simp
lemma transfer_start': "\<lbrakk>P; Rel (op \<longrightarrow>) P Q\<rbrakk> \<Longrightarrow> Q"
unfolding Rel_def by simp
lemma transfer_prover_start: "\<lbrakk>x = x'; Rel R x' y\<rbrakk> \<Longrightarrow> Rel R x y"
by simp
lemma untransfer_start: "\<lbrakk>Q; Rel (op =) P Q\<rbrakk> \<Longrightarrow> P"
unfolding Rel_def by simp
lemma Rel_eq_refl: "Rel (op =) x x"
unfolding Rel_def ..
lemma Rel_app:
assumes "Rel (A ===> B) f g" and "Rel A x y"
shows "Rel B (f x) (g y)"
using assms unfolding Rel_def fun_rel_def by fast
lemma Rel_abs:
assumes "\<And>x y. Rel A x y \<Longrightarrow> Rel B (f x) (g y)"
shows "Rel (A ===> B) (\<lambda>x. f x) (\<lambda>y. g y)"
using assms unfolding Rel_def fun_rel_def by fast
end
ML_file "Tools/transfer.ML"
setup Transfer.setup
declare refl [transfer_rule]
declare fun_rel_eq [relator_eq]
hide_const (open) Rel
context
begin
interpretation lifting_syntax .
text {* Handling of domains *}
lemma Domaimp_refl[transfer_domain_rule]:
"Domainp T = Domainp T" ..
subsection {* Predicates on relations, i.e. ``class constraints'' *}
definition right_total :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> bool"
where "right_total R \<longleftrightarrow> (\<forall>y. \<exists>x. R x y)"
definition right_unique :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> bool"
where "right_unique R \<longleftrightarrow> (\<forall>x y z. R x y \<longrightarrow> R x z \<longrightarrow> y = z)"
definition bi_total :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> bool"
where "bi_total R \<longleftrightarrow> (\<forall>x. \<exists>y. R x y) \<and> (\<forall>y. \<exists>x. R x y)"
definition bi_unique :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> bool"
where "bi_unique R \<longleftrightarrow>
(\<forall>x y z. R x y \<longrightarrow> R x z \<longrightarrow> y = z) \<and>
(\<forall>x y z. R x z \<longrightarrow> R y z \<longrightarrow> x = y)"
lemma bi_uniqueDr: "\<lbrakk> bi_unique A; A x y; A x z \<rbrakk> \<Longrightarrow> y = z"
by(simp add: bi_unique_def)
lemma bi_uniqueDl: "\<lbrakk> bi_unique A; A x y; A z y \<rbrakk> \<Longrightarrow> x = z"
by(simp add: bi_unique_def)
lemma right_uniqueI: "(\<And>x y z. \<lbrakk> A x y; A x z \<rbrakk> \<Longrightarrow> y = z) \<Longrightarrow> right_unique A"
unfolding right_unique_def by blast
lemma right_uniqueD: "\<lbrakk> right_unique A; A x y; A x z \<rbrakk> \<Longrightarrow> y = z"
unfolding right_unique_def by blast
lemma right_total_alt_def:
"right_total R \<longleftrightarrow> ((R ===> op \<longrightarrow>) ===> op \<longrightarrow>) All All"
unfolding right_total_def fun_rel_def
apply (rule iffI, fast)
apply (rule allI)
apply (drule_tac x="\<lambda>x. True" in spec)
apply (drule_tac x="\<lambda>y. \<exists>x. R x y" in spec)
apply fast
done
lemma right_unique_alt_def:
"right_unique R \<longleftrightarrow> (R ===> R ===> op \<longrightarrow>) (op =) (op =)"
unfolding right_unique_def fun_rel_def by auto
lemma bi_total_alt_def:
"bi_total R \<longleftrightarrow> ((R ===> op =) ===> op =) All All"
unfolding bi_total_def fun_rel_def
apply (rule iffI, fast)
apply safe
apply (drule_tac x="\<lambda>x. \<exists>y. R x y" in spec)
apply (drule_tac x="\<lambda>y. True" in spec)
apply fast
apply (drule_tac x="\<lambda>x. True" in spec)
apply (drule_tac x="\<lambda>y. \<exists>x. R x y" in spec)
apply fast
done
lemma bi_unique_alt_def:
"bi_unique R \<longleftrightarrow> (R ===> R ===> op =) (op =) (op =)"
unfolding bi_unique_def fun_rel_def by auto
lemma bi_unique_conversep [simp]: "bi_unique R\<inverse>\<inverse> = bi_unique R"
by(auto simp add: bi_unique_def)
lemma bi_total_conversep [simp]: "bi_total R\<inverse>\<inverse> = bi_total R"
by(auto simp add: bi_total_def)
text {* Properties are preserved by relation composition. *}
lemma OO_def: "R OO S = (\<lambda>x z. \<exists>y. R x y \<and> S y z)"
by auto
lemma bi_total_OO: "\<lbrakk>bi_total A; bi_total B\<rbrakk> \<Longrightarrow> bi_total (A OO B)"
unfolding bi_total_def OO_def by metis
lemma bi_unique_OO: "\<lbrakk>bi_unique A; bi_unique B\<rbrakk> \<Longrightarrow> bi_unique (A OO B)"
unfolding bi_unique_def OO_def by metis
lemma right_total_OO:
"\<lbrakk>right_total A; right_total B\<rbrakk> \<Longrightarrow> right_total (A OO B)"
unfolding right_total_def OO_def by metis
lemma right_unique_OO:
"\<lbrakk>right_unique A; right_unique B\<rbrakk> \<Longrightarrow> right_unique (A OO B)"
unfolding right_unique_def OO_def by metis
subsection {* Properties of relators *}
lemma right_total_eq [transfer_rule]: "right_total (op =)"
unfolding right_total_def by simp
lemma right_unique_eq [transfer_rule]: "right_unique (op =)"
unfolding right_unique_def by simp
lemma bi_total_eq [transfer_rule]: "bi_total (op =)"
unfolding bi_total_def by simp
lemma bi_unique_eq [transfer_rule]: "bi_unique (op =)"
unfolding bi_unique_def by simp
lemma right_total_fun [transfer_rule]:
"\<lbrakk>right_unique A; right_total B\<rbrakk> \<Longrightarrow> right_total (A ===> B)"
unfolding right_total_def fun_rel_def
apply (rule allI, rename_tac g)
apply (rule_tac x="\<lambda>x. SOME z. B z (g (THE y. A x y))" in exI)
apply clarify
apply (subgoal_tac "(THE y. A x y) = y", simp)
apply (rule someI_ex)
apply (simp)
apply (rule the_equality)
apply assumption
apply (simp add: right_unique_def)
done
lemma right_unique_fun [transfer_rule]:
"\<lbrakk>right_total A; right_unique B\<rbrakk> \<Longrightarrow> right_unique (A ===> B)"
unfolding right_total_def right_unique_def fun_rel_def
by (clarify, rule ext, fast)
lemma bi_total_fun [transfer_rule]:
"\<lbrakk>bi_unique A; bi_total B\<rbrakk> \<Longrightarrow> bi_total (A ===> B)"
unfolding bi_total_def fun_rel_def
apply safe
apply (rename_tac f)
apply (rule_tac x="\<lambda>y. SOME z. B (f (THE x. A x y)) z" in exI)
apply clarify
apply (subgoal_tac "(THE x. A x y) = x", simp)
apply (rule someI_ex)
apply (simp)
apply (rule the_equality)
apply assumption
apply (simp add: bi_unique_def)
apply (rename_tac g)
apply (rule_tac x="\<lambda>x. SOME z. B z (g (THE y. A x y))" in exI)
apply clarify
apply (subgoal_tac "(THE y. A x y) = y", simp)
apply (rule someI_ex)
apply (simp)
apply (rule the_equality)
apply assumption
apply (simp add: bi_unique_def)
done
lemma bi_unique_fun [transfer_rule]:
"\<lbrakk>bi_total A; bi_unique B\<rbrakk> \<Longrightarrow> bi_unique (A ===> B)"
unfolding bi_total_def bi_unique_def fun_rel_def fun_eq_iff
by (safe, metis, fast)
subsection {* Transfer rules *}
lemma Domainp_iff: "Domainp T x \<longleftrightarrow> (\<exists>y. T x y)"
by auto
lemma Domainp_forall_transfer [transfer_rule]:
assumes "right_total A"
shows "((A ===> op =) ===> op =)
(transfer_bforall (Domainp A)) transfer_forall"
using assms unfolding right_total_def
unfolding transfer_forall_def transfer_bforall_def fun_rel_def Domainp_iff
by metis
text {* Transfer rules using implication instead of equality on booleans. *}
lemma transfer_forall_transfer [transfer_rule]:
"bi_total A \<Longrightarrow> ((A ===> op =) ===> op =) transfer_forall transfer_forall"
"right_total A \<Longrightarrow> ((A ===> op =) ===> implies) transfer_forall transfer_forall"
"right_total A \<Longrightarrow> ((A ===> implies) ===> implies) transfer_forall transfer_forall"
"bi_total A \<Longrightarrow> ((A ===> op =) ===> rev_implies) transfer_forall transfer_forall"
"bi_total A \<Longrightarrow> ((A ===> rev_implies) ===> rev_implies) transfer_forall transfer_forall"
unfolding transfer_forall_def rev_implies_def fun_rel_def right_total_def bi_total_def
by metis+
lemma transfer_implies_transfer [transfer_rule]:
"(op = ===> op = ===> op = ) transfer_implies transfer_implies"
"(rev_implies ===> implies ===> implies ) transfer_implies transfer_implies"
"(rev_implies ===> op = ===> implies ) transfer_implies transfer_implies"
"(op = ===> implies ===> implies ) transfer_implies transfer_implies"
"(op = ===> op = ===> implies ) transfer_implies transfer_implies"
"(implies ===> rev_implies ===> rev_implies) transfer_implies transfer_implies"
"(implies ===> op = ===> rev_implies) transfer_implies transfer_implies"
"(op = ===> rev_implies ===> rev_implies) transfer_implies transfer_implies"
"(op = ===> op = ===> rev_implies) transfer_implies transfer_implies"
unfolding transfer_implies_def rev_implies_def fun_rel_def by auto
lemma eq_imp_transfer [transfer_rule]:
"right_unique A \<Longrightarrow> (A ===> A ===> op \<longrightarrow>) (op =) (op =)"
unfolding right_unique_alt_def .
lemma eq_transfer [transfer_rule]:
assumes "bi_unique A"
shows "(A ===> A ===> op =) (op =) (op =)"
using assms unfolding bi_unique_def fun_rel_def by auto
lemma right_total_Ex_transfer[transfer_rule]:
assumes "right_total A"
shows "((A ===> op=) ===> op=) (Bex (Collect (Domainp A))) Ex"
using assms unfolding right_total_def Bex_def fun_rel_def Domainp_iff[abs_def]
by blast
lemma right_total_All_transfer[transfer_rule]:
assumes "right_total A"
shows "((A ===> op =) ===> op =) (Ball (Collect (Domainp A))) All"
using assms unfolding right_total_def Ball_def fun_rel_def Domainp_iff[abs_def]
by blast
lemma All_transfer [transfer_rule]:
assumes "bi_total A"
shows "((A ===> op =) ===> op =) All All"
using assms unfolding bi_total_def fun_rel_def by fast
lemma Ex_transfer [transfer_rule]:
assumes "bi_total A"
shows "((A ===> op =) ===> op =) Ex Ex"
using assms unfolding bi_total_def fun_rel_def by fast
lemma If_transfer [transfer_rule]: "(op = ===> A ===> A ===> A) If If"
unfolding fun_rel_def by simp
lemma Let_transfer [transfer_rule]: "(A ===> (A ===> B) ===> B) Let Let"
unfolding fun_rel_def by simp
lemma id_transfer [transfer_rule]: "(A ===> A) id id"
unfolding fun_rel_def by simp
lemma comp_transfer [transfer_rule]:
"((B ===> C) ===> (A ===> B) ===> (A ===> C)) (op \<circ>) (op \<circ>)"
unfolding fun_rel_def by simp
lemma fun_upd_transfer [transfer_rule]:
assumes [transfer_rule]: "bi_unique A"
shows "((A ===> B) ===> A ===> B ===> A ===> B) fun_upd fun_upd"
unfolding fun_upd_def [abs_def] by transfer_prover
lemma nat_case_transfer [transfer_rule]:
"(A ===> (op = ===> A) ===> op = ===> A) nat_case nat_case"
unfolding fun_rel_def by (simp split: nat.split)
lemma nat_rec_transfer [transfer_rule]:
"(A ===> (op = ===> A ===> A) ===> op = ===> A) nat_rec nat_rec"
unfolding fun_rel_def by (clarsimp, rename_tac n, induct_tac n, simp_all)
lemma funpow_transfer [transfer_rule]:
"(op = ===> (A ===> A) ===> (A ===> A)) compow compow"
unfolding funpow_def by transfer_prover
lemma mono_transfer[transfer_rule]:
assumes [transfer_rule]: "bi_total A"
assumes [transfer_rule]: "(A ===> A ===> op=) op\<le> op\<le>"
assumes [transfer_rule]: "(B ===> B ===> op=) op\<le> op\<le>"
shows "((A ===> B) ===> op=) mono mono"
unfolding mono_def[abs_def] by transfer_prover
lemma right_total_relcompp_transfer[transfer_rule]:
assumes [transfer_rule]: "right_total B"
shows "((A ===> B ===> op=) ===> (B ===> C ===> op=) ===> A ===> C ===> op=)
(\<lambda>R S x z. \<exists>y\<in>Collect (Domainp B). R x y \<and> S y z) op OO"
unfolding OO_def[abs_def] by transfer_prover
lemma relcompp_transfer[transfer_rule]:
assumes [transfer_rule]: "bi_total B"
shows "((A ===> B ===> op=) ===> (B ===> C ===> op=) ===> A ===> C ===> op=) op OO op OO"
unfolding OO_def[abs_def] by transfer_prover
lemma right_total_Domainp_transfer[transfer_rule]:
assumes [transfer_rule]: "right_total B"
shows "((A ===> B ===> op=) ===> A ===> op=) (\<lambda>T x. \<exists>y\<in>Collect(Domainp B). T x y) Domainp"
apply(subst(2) Domainp_iff[abs_def]) by transfer_prover
lemma Domainp_transfer[transfer_rule]:
assumes [transfer_rule]: "bi_total B"
shows "((A ===> B ===> op=) ===> A ===> op=) Domainp Domainp"
unfolding Domainp_iff[abs_def] by transfer_prover
lemma reflp_transfer[transfer_rule]:
"bi_total A \<Longrightarrow> ((A ===> A ===> op=) ===> op=) reflp reflp"
"right_total A \<Longrightarrow> ((A ===> A ===> implies) ===> implies) reflp reflp"
"right_total A \<Longrightarrow> ((A ===> A ===> op=) ===> implies) reflp reflp"
"bi_total A \<Longrightarrow> ((A ===> A ===> rev_implies) ===> rev_implies) reflp reflp"
"bi_total A \<Longrightarrow> ((A ===> A ===> op=) ===> rev_implies) reflp reflp"
using assms unfolding reflp_def[abs_def] rev_implies_def bi_total_def right_total_def fun_rel_def
by fast+
lemma right_unique_transfer [transfer_rule]:
assumes [transfer_rule]: "right_total A"
assumes [transfer_rule]: "right_total B"
assumes [transfer_rule]: "bi_unique B"
shows "((A ===> B ===> op=) ===> implies) right_unique right_unique"
using assms unfolding right_unique_def[abs_def] right_total_def bi_unique_def fun_rel_def
by metis
end
end