| author | wenzelm |
| Tue, 08 Feb 2011 17:36:21 +0100 | |
| changeset 41718 | 05514b09bb4b |
| parent 40406 | 313a24b66a8d |
| permissions | -rw-r--r-- |
% \begin{isabellebody}% \def\isabellecontext{CTLind}% % \isadelimtheory % \endisadelimtheory % \isatagtheory % \endisatagtheory {\isafoldtheory}% % \isadelimtheory % \endisadelimtheory % \isamarkupsubsection{CTL Revisited% } \isamarkuptrue% % \begin{isamarkuptext}% \label{sec:CTL-revisited} \index{CTL|(}% The purpose of this section is twofold: to demonstrate some of the induction principles and heuristics discussed above and to show how inductive definitions can simplify proofs. In \S\ref{sec:CTL} we gave a fairly involved proof of the correctness of a model checker for CTL\@. In particular the proof of the \isa{infinity{\isaliteral{5F}{\isacharunderscore}}lemma} on the way to \isa{AF{\isaliteral{5F}{\isacharunderscore}}lemma{\isadigit{2}}} is not as simple as one might expect, due to the \isa{SOME} operator involved. Below we give a simpler proof of \isa{AF{\isaliteral{5F}{\isacharunderscore}}lemma{\isadigit{2}}} based on an auxiliary inductive definition. Let us call a (finite or infinite) path \emph{\isa{A}-avoiding} if it does not touch any node in the set \isa{A}. Then \isa{AF{\isaliteral{5F}{\isacharunderscore}}lemma{\isadigit{2}}} says that if no infinite path from some state \isa{s} is \isa{A}-avoiding, then \isa{s\ {\isaliteral{5C3C696E3E}{\isasymin}}\ lfp\ {\isaliteral{28}{\isacharparenleft}}af\ A{\isaliteral{29}{\isacharparenright}}}. We prove this by inductively defining the set \isa{Avoid\ s\ A} of states reachable from \isa{s} by a finite \isa{A}-avoiding path: % Second proof of opposite direction, directly by well-founded induction % on the initial segment of M that avoids A.% \end{isamarkuptext}% \isamarkuptrue% \isacommand{inductive{\isaliteral{5F}{\isacharunderscore}}set}\isamarkupfalse% \isanewline \ \ Avoid\ {\isaliteral{3A}{\isacharcolon}}{\isaliteral{3A}{\isacharcolon}}\ {\isaliteral{22}{\isachardoublequoteopen}}state\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ state\ set\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ state\ set{\isaliteral{22}{\isachardoublequoteclose}}\isanewline \ \ \isakeyword{for}\ s\ {\isaliteral{3A}{\isacharcolon}}{\isaliteral{3A}{\isacharcolon}}\ state\ \isakeyword{and}\ A\ {\isaliteral{3A}{\isacharcolon}}{\isaliteral{3A}{\isacharcolon}}\ {\isaliteral{22}{\isachardoublequoteopen}}state\ set{\isaliteral{22}{\isachardoublequoteclose}}\isanewline \isakeyword{where}\isanewline \ \ \ \ {\isaliteral{22}{\isachardoublequoteopen}}s\ {\isaliteral{5C3C696E3E}{\isasymin}}\ Avoid\ s\ A{\isaliteral{22}{\isachardoublequoteclose}}\isanewline \ \ {\isaliteral{7C}{\isacharbar}}\ {\isaliteral{22}{\isachardoublequoteopen}}{\isaliteral{5C3C6C6272616B6B3E}{\isasymlbrakk}}\ t\ {\isaliteral{5C3C696E3E}{\isasymin}}\ Avoid\ s\ A{\isaliteral{3B}{\isacharsemicolon}}\ t\ {\isaliteral{5C3C6E6F74696E3E}{\isasymnotin}}\ A{\isaliteral{3B}{\isacharsemicolon}}\ {\isaliteral{28}{\isacharparenleft}}t{\isaliteral{2C}{\isacharcomma}}u{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C696E3E}{\isasymin}}\ M\ {\isaliteral{5C3C726272616B6B3E}{\isasymrbrakk}}\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ u\ {\isaliteral{5C3C696E3E}{\isasymin}}\ Avoid\ s\ A{\isaliteral{22}{\isachardoublequoteclose}}% \begin{isamarkuptext}% It is easy to see that for any infinite \isa{A}-avoiding path \isa{f} with \isa{f\ {\isadigit{0}}\ {\isaliteral{5C3C696E3E}{\isasymin}}\ Avoid\ s\ A} there is an infinite \isa{A}-avoiding path starting with \isa{s} because (by definition of \isa{Avoid}) there is a finite \isa{A}-avoiding path from \isa{s} to \isa{f\ {\isadigit{0}}}. The proof is by induction on \isa{f\ {\isadigit{0}}\ {\isaliteral{5C3C696E3E}{\isasymin}}\ Avoid\ s\ A}. However, this requires the following reformulation, as explained in \S\ref{sec:ind-var-in-prems} above; the \isa{rule{\isaliteral{5F}{\isacharunderscore}}format} directive undoes the reformulation after the proof.% \end{isamarkuptext}% \isamarkuptrue% \isacommand{lemma}\isamarkupfalse% \ ex{\isaliteral{5F}{\isacharunderscore}}infinite{\isaliteral{5F}{\isacharunderscore}}path{\isaliteral{5B}{\isacharbrackleft}}rule{\isaliteral{5F}{\isacharunderscore}}format{\isaliteral{5D}{\isacharbrackright}}{\isaliteral{3A}{\isacharcolon}}\isanewline \ \ {\isaliteral{22}{\isachardoublequoteopen}}t\ {\isaliteral{5C3C696E3E}{\isasymin}}\ Avoid\ s\ A\ \ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\isanewline \ \ \ {\isaliteral{5C3C666F72616C6C3E}{\isasymforall}}f{\isaliteral{5C3C696E3E}{\isasymin}}Paths\ t{\isaliteral{2E}{\isachardot}}\ {\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C666F72616C6C3E}{\isasymforall}}i{\isaliteral{2E}{\isachardot}}\ f\ i\ {\isaliteral{5C3C6E6F74696E3E}{\isasymnotin}}\ A{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C6C6F6E6772696768746172726F773E}{\isasymlongrightarrow}}\ {\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C6578697374733E}{\isasymexists}}p{\isaliteral{5C3C696E3E}{\isasymin}}Paths\ s{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C666F72616C6C3E}{\isasymforall}}i{\isaliteral{2E}{\isachardot}}\ p\ i\ {\isaliteral{5C3C6E6F74696E3E}{\isasymnotin}}\ A{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequoteclose}}\isanewline % \isadelimproof % \endisadelimproof % \isatagproof \isacommand{apply}\isamarkupfalse% {\isaliteral{28}{\isacharparenleft}}erule\ Avoid{\isaliteral{2E}{\isachardot}}induct{\isaliteral{29}{\isacharparenright}}\isanewline \ \isacommand{apply}\isamarkupfalse% {\isaliteral{28}{\isacharparenleft}}blast{\isaliteral{29}{\isacharparenright}}\isanewline \isacommand{apply}\isamarkupfalse% {\isaliteral{28}{\isacharparenleft}}clarify{\isaliteral{29}{\isacharparenright}}\isanewline \isacommand{apply}\isamarkupfalse% {\isaliteral{28}{\isacharparenleft}}drule{\isaliteral{5F}{\isacharunderscore}}tac\ x\ {\isaliteral{3D}{\isacharequal}}\ {\isaliteral{22}{\isachardoublequoteopen}}{\isaliteral{5C3C6C616D6264613E}{\isasymlambda}}i{\isaliteral{2E}{\isachardot}}\ case\ i\ of\ {\isadigit{0}}\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ t\ {\isaliteral{7C}{\isacharbar}}\ Suc\ i\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ f\ i{\isaliteral{22}{\isachardoublequoteclose}}\ \isakeyword{in}\ bspec{\isaliteral{29}{\isacharparenright}}\isanewline \isacommand{apply}\isamarkupfalse% {\isaliteral{28}{\isacharparenleft}}simp{\isaliteral{5F}{\isacharunderscore}}all\ add{\isaliteral{3A}{\isacharcolon}}\ Paths{\isaliteral{5F}{\isacharunderscore}}def\ split{\isaliteral{3A}{\isacharcolon}}\ nat{\isaliteral{2E}{\isachardot}}split{\isaliteral{29}{\isacharparenright}}\isanewline \isacommand{done}\isamarkupfalse% % \endisatagproof {\isafoldproof}% % \isadelimproof % \endisadelimproof % \begin{isamarkuptext}% \noindent The base case (\isa{t\ {\isaliteral{3D}{\isacharequal}}\ s}) is trivial and proved by \isa{blast}. In the induction step, we have an infinite \isa{A}-avoiding path \isa{f} starting from \isa{u}, a successor of \isa{t}. Now we simply instantiate the \isa{{\isaliteral{5C3C666F72616C6C3E}{\isasymforall}}f{\isaliteral{5C3C696E3E}{\isasymin}}Paths\ t} in the induction hypothesis by the path starting with \isa{t} and continuing with \isa{f}. That is what the above $\lambda$-term expresses. Simplification shows that this is a path starting with \isa{t} and that the instantiated induction hypothesis implies the conclusion. Now we come to the key lemma. Assuming that no infinite \isa{A}-avoiding path starts from \isa{s}, we want to show \isa{s\ {\isaliteral{5C3C696E3E}{\isasymin}}\ lfp\ {\isaliteral{28}{\isacharparenleft}}af\ A{\isaliteral{29}{\isacharparenright}}}. For the inductive proof this must be generalized to the statement that every point \isa{t} ``between'' \isa{s} and \isa{A}, in other words all of \isa{Avoid\ s\ A}, is contained in \isa{lfp\ {\isaliteral{28}{\isacharparenleft}}af\ A{\isaliteral{29}{\isacharparenright}}}:% \end{isamarkuptext}% \isamarkuptrue% \isacommand{lemma}\isamarkupfalse% \ Avoid{\isaliteral{5F}{\isacharunderscore}}in{\isaliteral{5F}{\isacharunderscore}}lfp{\isaliteral{5B}{\isacharbrackleft}}rule{\isaliteral{5F}{\isacharunderscore}}format{\isaliteral{28}{\isacharparenleft}}no{\isaliteral{5F}{\isacharunderscore}}asm{\isaliteral{29}{\isacharparenright}}{\isaliteral{5D}{\isacharbrackright}}{\isaliteral{3A}{\isacharcolon}}\isanewline \ \ {\isaliteral{22}{\isachardoublequoteopen}}{\isaliteral{5C3C666F72616C6C3E}{\isasymforall}}p{\isaliteral{5C3C696E3E}{\isasymin}}Paths\ s{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C6578697374733E}{\isasymexists}}i{\isaliteral{2E}{\isachardot}}\ p\ i\ {\isaliteral{5C3C696E3E}{\isasymin}}\ A\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ t\ {\isaliteral{5C3C696E3E}{\isasymin}}\ Avoid\ s\ A\ {\isaliteral{5C3C6C6F6E6772696768746172726F773E}{\isasymlongrightarrow}}\ t\ {\isaliteral{5C3C696E3E}{\isasymin}}\ lfp{\isaliteral{28}{\isacharparenleft}}af\ A{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequoteclose}}% \isadelimproof % \endisadelimproof % \isatagproof % \begin{isamarkuptxt}% \noindent The proof is by induction on the ``distance'' between \isa{t} and \isa{A}. Remember that \isa{lfp\ {\isaliteral{28}{\isacharparenleft}}af\ A{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{3D}{\isacharequal}}\ A\ {\isaliteral{5C3C756E696F6E3E}{\isasymunion}}\ M{\isaliteral{5C3C696E76657273653E}{\isasyminverse}}\ {\isaliteral{60}{\isacharbackquote}}{\isaliteral{60}{\isacharbackquote}}\ lfp\ {\isaliteral{28}{\isacharparenleft}}af\ A{\isaliteral{29}{\isacharparenright}}}. If \isa{t} is already in \isa{A}, then \isa{t\ {\isaliteral{5C3C696E3E}{\isasymin}}\ lfp\ {\isaliteral{28}{\isacharparenleft}}af\ A{\isaliteral{29}{\isacharparenright}}} is trivial. If \isa{t} is not in \isa{A} but all successors are in \isa{lfp\ {\isaliteral{28}{\isacharparenleft}}af\ A{\isaliteral{29}{\isacharparenright}}} (induction hypothesis), then \isa{t\ {\isaliteral{5C3C696E3E}{\isasymin}}\ lfp\ {\isaliteral{28}{\isacharparenleft}}af\ A{\isaliteral{29}{\isacharparenright}}} is again trivial. The formal counterpart of this proof sketch is a well-founded induction on~\isa{M} restricted to \isa{Avoid\ s\ A\ {\isaliteral{2D}{\isacharminus}}\ A}, roughly speaking: \begin{isabelle}% \ \ \ \ \ {\isaliteral{7B}{\isacharbraceleft}}{\isaliteral{28}{\isacharparenleft}}y{\isaliteral{2C}{\isacharcomma}}\ x{\isaliteral{29}{\isacharparenright}}{\isaliteral{2E}{\isachardot}}\ {\isaliteral{28}{\isacharparenleft}}x{\isaliteral{2C}{\isacharcomma}}\ y{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C696E3E}{\isasymin}}\ M\ {\isaliteral{5C3C616E643E}{\isasymand}}\ x\ {\isaliteral{5C3C696E3E}{\isasymin}}\ Avoid\ s\ A\ {\isaliteral{5C3C616E643E}{\isasymand}}\ x\ {\isaliteral{5C3C6E6F74696E3E}{\isasymnotin}}\ A{\isaliteral{7D}{\isacharbraceright}}% \end{isabelle} As we shall see presently, the absence of infinite \isa{A}-avoiding paths starting from \isa{s} implies well-foundedness of this relation. For the moment we assume this and proceed with the induction:% \end{isamarkuptxt}% \isamarkuptrue% \isacommand{apply}\isamarkupfalse% {\isaliteral{28}{\isacharparenleft}}subgoal{\isaliteral{5F}{\isacharunderscore}}tac\ {\isaliteral{22}{\isachardoublequoteopen}}wf{\isaliteral{7B}{\isacharbraceleft}}{\isaliteral{28}{\isacharparenleft}}y{\isaliteral{2C}{\isacharcomma}}x{\isaliteral{29}{\isacharparenright}}{\isaliteral{2E}{\isachardot}}\ {\isaliteral{28}{\isacharparenleft}}x{\isaliteral{2C}{\isacharcomma}}y{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C696E3E}{\isasymin}}\ M\ {\isaliteral{5C3C616E643E}{\isasymand}}\ x\ {\isaliteral{5C3C696E3E}{\isasymin}}\ Avoid\ s\ A\ {\isaliteral{5C3C616E643E}{\isasymand}}\ x\ {\isaliteral{5C3C6E6F74696E3E}{\isasymnotin}}\ A{\isaliteral{7D}{\isacharbraceright}}{\isaliteral{22}{\isachardoublequoteclose}}{\isaliteral{29}{\isacharparenright}}\isanewline \ \isacommand{apply}\isamarkupfalse% {\isaliteral{28}{\isacharparenleft}}erule{\isaliteral{5F}{\isacharunderscore}}tac\ a\ {\isaliteral{3D}{\isacharequal}}\ t\ \isakeyword{in}\ wf{\isaliteral{5F}{\isacharunderscore}}induct{\isaliteral{29}{\isacharparenright}}\isanewline \ \isacommand{apply}\isamarkupfalse% {\isaliteral{28}{\isacharparenleft}}clarsimp{\isaliteral{29}{\isacharparenright}}% \begin{isamarkuptxt}% \noindent \begin{isabelle}% \ {\isadigit{1}}{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C416E643E}{\isasymAnd}}t{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C6C6272616B6B3E}{\isasymlbrakk}}{\isaliteral{5C3C666F72616C6C3E}{\isasymforall}}p{\isaliteral{5C3C696E3E}{\isasymin}}Paths\ s{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C6578697374733E}{\isasymexists}}i{\isaliteral{2E}{\isachardot}}\ p\ i\ {\isaliteral{5C3C696E3E}{\isasymin}}\ A{\isaliteral{3B}{\isacharsemicolon}}\isanewline \isaindent{\ {\isadigit{1}}{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C416E643E}{\isasymAnd}}t{\isaliteral{2E}{\isachardot}}\ \ }{\isaliteral{5C3C666F72616C6C3E}{\isasymforall}}y{\isaliteral{2E}{\isachardot}}\ {\isaliteral{28}{\isacharparenleft}}t{\isaliteral{2C}{\isacharcomma}}\ y{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C696E3E}{\isasymin}}\ M\ {\isaliteral{5C3C616E643E}{\isasymand}}\ t\ {\isaliteral{5C3C6E6F74696E3E}{\isasymnotin}}\ A\ {\isaliteral{5C3C6C6F6E6772696768746172726F773E}{\isasymlongrightarrow}}\isanewline \isaindent{\ {\isadigit{1}}{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C416E643E}{\isasymAnd}}t{\isaliteral{2E}{\isachardot}}\ \ {\isaliteral{5C3C666F72616C6C3E}{\isasymforall}}y{\isaliteral{2E}{\isachardot}}\ }y\ {\isaliteral{5C3C696E3E}{\isasymin}}\ Avoid\ s\ A\ {\isaliteral{5C3C6C6F6E6772696768746172726F773E}{\isasymlongrightarrow}}\ y\ {\isaliteral{5C3C696E3E}{\isasymin}}\ lfp\ {\isaliteral{28}{\isacharparenleft}}af\ A{\isaliteral{29}{\isacharparenright}}{\isaliteral{3B}{\isacharsemicolon}}\isanewline \isaindent{\ {\isadigit{1}}{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C416E643E}{\isasymAnd}}t{\isaliteral{2E}{\isachardot}}\ \ }t\ {\isaliteral{5C3C696E3E}{\isasymin}}\ Avoid\ s\ A{\isaliteral{5C3C726272616B6B3E}{\isasymrbrakk}}\isanewline \isaindent{\ {\isadigit{1}}{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C416E643E}{\isasymAnd}}t{\isaliteral{2E}{\isachardot}}\ }{\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ t\ {\isaliteral{5C3C696E3E}{\isasymin}}\ lfp\ {\isaliteral{28}{\isacharparenleft}}af\ A{\isaliteral{29}{\isacharparenright}}\isanewline \ {\isadigit{2}}{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C666F72616C6C3E}{\isasymforall}}p{\isaliteral{5C3C696E3E}{\isasymin}}Paths\ s{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C6578697374733E}{\isasymexists}}i{\isaliteral{2E}{\isachardot}}\ p\ i\ {\isaliteral{5C3C696E3E}{\isasymin}}\ A\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\isanewline \isaindent{\ {\isadigit{2}}{\isaliteral{2E}{\isachardot}}\ }wf\ {\isaliteral{7B}{\isacharbraceleft}}{\isaliteral{28}{\isacharparenleft}}y{\isaliteral{2C}{\isacharcomma}}\ x{\isaliteral{29}{\isacharparenright}}{\isaliteral{2E}{\isachardot}}\ {\isaliteral{28}{\isacharparenleft}}x{\isaliteral{2C}{\isacharcomma}}\ y{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C696E3E}{\isasymin}}\ M\ {\isaliteral{5C3C616E643E}{\isasymand}}\ x\ {\isaliteral{5C3C696E3E}{\isasymin}}\ Avoid\ s\ A\ {\isaliteral{5C3C616E643E}{\isasymand}}\ x\ {\isaliteral{5C3C6E6F74696E3E}{\isasymnotin}}\ A{\isaliteral{7D}{\isacharbraceright}}% \end{isabelle} Now the induction hypothesis states that if \isa{t\ {\isaliteral{5C3C6E6F74696E3E}{\isasymnotin}}\ A} then all successors of \isa{t} that are in \isa{Avoid\ s\ A} are in \isa{lfp\ {\isaliteral{28}{\isacharparenleft}}af\ A{\isaliteral{29}{\isacharparenright}}}. Unfolding \isa{lfp} in the conclusion of the first subgoal once, we have to prove that \isa{t} is in \isa{A} or all successors of \isa{t} are in \isa{lfp\ {\isaliteral{28}{\isacharparenleft}}af\ A{\isaliteral{29}{\isacharparenright}}}. But if \isa{t} is not in \isa{A}, the second \isa{Avoid}-rule implies that all successors of \isa{t} are in \isa{Avoid\ s\ A}, because we also assume \isa{t\ {\isaliteral{5C3C696E3E}{\isasymin}}\ Avoid\ s\ A}. Hence, by the induction hypothesis, all successors of \isa{t} are indeed in \isa{lfp\ {\isaliteral{28}{\isacharparenleft}}af\ A{\isaliteral{29}{\isacharparenright}}}. Mechanically:% \end{isamarkuptxt}% \isamarkuptrue% \ \isacommand{apply}\isamarkupfalse% {\isaliteral{28}{\isacharparenleft}}subst\ lfp{\isaliteral{5F}{\isacharunderscore}}unfold{\isaliteral{5B}{\isacharbrackleft}}OF\ mono{\isaliteral{5F}{\isacharunderscore}}af{\isaliteral{5D}{\isacharbrackright}}{\isaliteral{29}{\isacharparenright}}\isanewline \ \isacommand{apply}\isamarkupfalse% {\isaliteral{28}{\isacharparenleft}}simp\ {\isaliteral{28}{\isacharparenleft}}no{\isaliteral{5F}{\isacharunderscore}}asm{\isaliteral{29}{\isacharparenright}}\ add{\isaliteral{3A}{\isacharcolon}}\ af{\isaliteral{5F}{\isacharunderscore}}def{\isaliteral{29}{\isacharparenright}}\isanewline \ \isacommand{apply}\isamarkupfalse% {\isaliteral{28}{\isacharparenleft}}blast\ intro{\isaliteral{3A}{\isacharcolon}}\ Avoid{\isaliteral{2E}{\isachardot}}intros{\isaliteral{29}{\isacharparenright}}% \begin{isamarkuptxt}% Having proved the main goal, we return to the proof obligation that the relation used above is indeed well-founded. This is proved by contradiction: if the relation is not well-founded then there exists an infinite \isa{A}-avoiding path all in \isa{Avoid\ s\ A}, by theorem \isa{wf{\isaliteral{5F}{\isacharunderscore}}iff{\isaliteral{5F}{\isacharunderscore}}no{\isaliteral{5F}{\isacharunderscore}}infinite{\isaliteral{5F}{\isacharunderscore}}down{\isaliteral{5F}{\isacharunderscore}}chain}: \begin{isabelle}% \ \ \ \ \ wf\ r\ {\isaliteral{3D}{\isacharequal}}\ {\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C6E6F743E}{\isasymnot}}\ {\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C6578697374733E}{\isasymexists}}f{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C666F72616C6C3E}{\isasymforall}}i{\isaliteral{2E}{\isachardot}}\ {\isaliteral{28}{\isacharparenleft}}f\ {\isaliteral{28}{\isacharparenleft}}Suc\ i{\isaliteral{29}{\isacharparenright}}{\isaliteral{2C}{\isacharcomma}}\ f\ i{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C696E3E}{\isasymin}}\ r{\isaliteral{29}{\isacharparenright}}{\isaliteral{29}{\isacharparenright}}% \end{isabelle} From lemma \isa{ex{\isaliteral{5F}{\isacharunderscore}}infinite{\isaliteral{5F}{\isacharunderscore}}path} the existence of an infinite \isa{A}-avoiding path starting in \isa{s} follows, contradiction.% \end{isamarkuptxt}% \isamarkuptrue% \isacommand{apply}\isamarkupfalse% {\isaliteral{28}{\isacharparenleft}}erule\ contrapos{\isaliteral{5F}{\isacharunderscore}}pp{\isaliteral{29}{\isacharparenright}}\isanewline \isacommand{apply}\isamarkupfalse% {\isaliteral{28}{\isacharparenleft}}simp\ add{\isaliteral{3A}{\isacharcolon}}\ wf{\isaliteral{5F}{\isacharunderscore}}iff{\isaliteral{5F}{\isacharunderscore}}no{\isaliteral{5F}{\isacharunderscore}}infinite{\isaliteral{5F}{\isacharunderscore}}down{\isaliteral{5F}{\isacharunderscore}}chain{\isaliteral{29}{\isacharparenright}}\isanewline \isacommand{apply}\isamarkupfalse% {\isaliteral{28}{\isacharparenleft}}erule\ exE{\isaliteral{29}{\isacharparenright}}\isanewline \isacommand{apply}\isamarkupfalse% {\isaliteral{28}{\isacharparenleft}}rule\ ex{\isaliteral{5F}{\isacharunderscore}}infinite{\isaliteral{5F}{\isacharunderscore}}path{\isaliteral{29}{\isacharparenright}}\isanewline \isacommand{apply}\isamarkupfalse% {\isaliteral{28}{\isacharparenleft}}auto\ simp\ add{\isaliteral{3A}{\isacharcolon}}\ Paths{\isaliteral{5F}{\isacharunderscore}}def{\isaliteral{29}{\isacharparenright}}\isanewline \isacommand{done}\isamarkupfalse% % \endisatagproof {\isafoldproof}% % \isadelimproof % \endisadelimproof % \begin{isamarkuptext}% The \isa{{\isaliteral{28}{\isacharparenleft}}no{\isaliteral{5F}{\isacharunderscore}}asm{\isaliteral{29}{\isacharparenright}}} modifier of the \isa{rule{\isaliteral{5F}{\isacharunderscore}}format} directive in the statement of the lemma means that the assumption is left unchanged; otherwise the \isa{{\isaliteral{5C3C666F72616C6C3E}{\isasymforall}}p} would be turned into a \isa{{\isaliteral{5C3C416E643E}{\isasymAnd}}p}, which would complicate matters below. As it is, \isa{Avoid{\isaliteral{5F}{\isacharunderscore}}in{\isaliteral{5F}{\isacharunderscore}}lfp} is now \begin{isabelle}% \ \ \ \ \ {\isaliteral{5C3C6C6272616B6B3E}{\isasymlbrakk}}{\isaliteral{5C3C666F72616C6C3E}{\isasymforall}}p{\isaliteral{5C3C696E3E}{\isasymin}}Paths\ s{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C6578697374733E}{\isasymexists}}i{\isaliteral{2E}{\isachardot}}\ p\ i\ {\isaliteral{5C3C696E3E}{\isasymin}}\ A{\isaliteral{3B}{\isacharsemicolon}}\ t\ {\isaliteral{5C3C696E3E}{\isasymin}}\ Avoid\ s\ A{\isaliteral{5C3C726272616B6B3E}{\isasymrbrakk}}\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ t\ {\isaliteral{5C3C696E3E}{\isasymin}}\ lfp\ {\isaliteral{28}{\isacharparenleft}}af\ A{\isaliteral{29}{\isacharparenright}}% \end{isabelle} The main theorem is simply the corollary where \isa{t\ {\isaliteral{3D}{\isacharequal}}\ s}, when the assumption \isa{t\ {\isaliteral{5C3C696E3E}{\isasymin}}\ Avoid\ s\ A} is trivially true by the first \isa{Avoid}-rule. Isabelle confirms this:% \index{CTL|)}% \end{isamarkuptext}% \isamarkuptrue% \isacommand{theorem}\isamarkupfalse% \ AF{\isaliteral{5F}{\isacharunderscore}}lemma{\isadigit{2}}{\isaliteral{3A}{\isacharcolon}}\ \ {\isaliteral{22}{\isachardoublequoteopen}}{\isaliteral{7B}{\isacharbraceleft}}s{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C666F72616C6C3E}{\isasymforall}}p\ {\isaliteral{5C3C696E3E}{\isasymin}}\ Paths\ s{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C6578697374733E}{\isasymexists}}\ i{\isaliteral{2E}{\isachardot}}\ p\ i\ {\isaliteral{5C3C696E3E}{\isasymin}}\ A{\isaliteral{7D}{\isacharbraceright}}\ {\isaliteral{5C3C73756273657465713E}{\isasymsubseteq}}\ lfp{\isaliteral{28}{\isacharparenleft}}af\ A{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequoteclose}}\isanewline % \isadelimproof % \endisadelimproof % \isatagproof \isacommand{by}\isamarkupfalse% {\isaliteral{28}{\isacharparenleft}}auto\ elim{\isaliteral{3A}{\isacharcolon}}\ Avoid{\isaliteral{5F}{\isacharunderscore}}in{\isaliteral{5F}{\isacharunderscore}}lfp\ intro{\isaliteral{3A}{\isacharcolon}}\ Avoid{\isaliteral{2E}{\isachardot}}intros{\isaliteral{29}{\isacharparenright}}\isanewline \isanewline % \endisatagproof {\isafoldproof}% % \isadelimproof % \endisadelimproof % \isadelimtheory % \endisadelimtheory % \isatagtheory % \endisatagtheory {\isafoldtheory}% % \isadelimtheory % \endisadelimtheory \end{isabellebody}% %%% Local Variables: %%% mode: latex %%% TeX-master: "root" %%% End: