(* Author: Amine Chaieb, TU Muenchen *)
section{*Fundamental Theorem of Algebra*}
theory Fundamental_Theorem_Algebra
imports Polynomial Complex_Main
begin
subsection {* More lemmas about module of complex numbers *}
text{* The triangle inequality for cmod *}
lemma complex_mod_triangle_sub: "cmod w \<le> cmod (w + z) + norm z"
using complex_mod_triangle_ineq2[of "w + z" "-z"] by auto
subsection {* Basic lemmas about polynomials *}
lemma poly_bound_exists:
fixes p :: "'a::{comm_semiring_0,real_normed_div_algebra} poly"
shows "\<exists>m. m > 0 \<and> (\<forall>z. norm z \<le> r \<longrightarrow> norm (poly p z) \<le> m)"
proof (induct p)
case 0
then show ?case by (rule exI[where x=1]) simp
next
case (pCons c cs)
from pCons.hyps obtain m where m: "\<forall>z. norm z \<le> r \<longrightarrow> norm (poly cs z) \<le> m"
by blast
let ?k = " 1 + norm c + \<bar>r * m\<bar>"
have kp: "?k > 0"
using abs_ge_zero[of "r*m"] norm_ge_zero[of c] by arith
{
fix z :: 'a
assume H: "norm z \<le> r"
from m H have th: "norm (poly cs z) \<le> m"
by blast
from H have rp: "r \<ge> 0"
using norm_ge_zero[of z] by arith
have "norm (poly (pCons c cs) z) \<le> norm c + norm (z * poly cs z)"
using norm_triangle_ineq[of c "z* poly cs z"] by simp
also have "\<dots> \<le> norm c + r * m"
using mult_mono[OF H th rp norm_ge_zero[of "poly cs z"]]
by (simp add: norm_mult)
also have "\<dots> \<le> ?k"
by simp
finally have "norm (poly (pCons c cs) z) \<le> ?k" .
}
with kp show ?case by blast
qed
text{* Offsetting the variable in a polynomial gives another of same degree *}
definition offset_poly :: "'a::comm_semiring_0 poly \<Rightarrow> 'a \<Rightarrow> 'a poly"
where "offset_poly p h = fold_coeffs (\<lambda>a q. smult h q + pCons a q) p 0"
lemma offset_poly_0: "offset_poly 0 h = 0"
by (simp add: offset_poly_def)
lemma offset_poly_pCons:
"offset_poly (pCons a p) h =
smult h (offset_poly p h) + pCons a (offset_poly p h)"
by (cases "p = 0 \<and> a = 0") (auto simp add: offset_poly_def)
lemma offset_poly_single: "offset_poly [:a:] h = [:a:]"
by (simp add: offset_poly_pCons offset_poly_0)
lemma poly_offset_poly: "poly (offset_poly p h) x = poly p (h + x)"
apply (induct p)
apply (simp add: offset_poly_0)
apply (simp add: offset_poly_pCons algebra_simps)
done
lemma offset_poly_eq_0_lemma: "smult c p + pCons a p = 0 \<Longrightarrow> p = 0"
by (induct p arbitrary: a) (simp, force)
lemma offset_poly_eq_0_iff: "offset_poly p h = 0 \<longleftrightarrow> p = 0"
apply (safe intro!: offset_poly_0)
apply (induct p)
apply simp
apply (simp add: offset_poly_pCons)
apply (frule offset_poly_eq_0_lemma, simp)
done
lemma degree_offset_poly: "degree (offset_poly p h) = degree p"
apply (induct p)
apply (simp add: offset_poly_0)
apply (case_tac "p = 0")
apply (simp add: offset_poly_0 offset_poly_pCons)
apply (simp add: offset_poly_pCons)
apply (subst degree_add_eq_right)
apply (rule le_less_trans [OF degree_smult_le])
apply (simp add: offset_poly_eq_0_iff)
apply (simp add: offset_poly_eq_0_iff)
done
definition "psize p = (if p = 0 then 0 else Suc (degree p))"
lemma psize_eq_0_iff [simp]: "psize p = 0 \<longleftrightarrow> p = 0"
unfolding psize_def by simp
lemma poly_offset:
fixes p :: "'a::comm_ring_1 poly"
shows "\<exists>q. psize q = psize p \<and> (\<forall>x. poly q x = poly p (a + x))"
proof (intro exI conjI)
show "psize (offset_poly p a) = psize p"
unfolding psize_def
by (simp add: offset_poly_eq_0_iff degree_offset_poly)
show "\<forall>x. poly (offset_poly p a) x = poly p (a + x)"
by (simp add: poly_offset_poly)
qed
text{* An alternative useful formulation of completeness of the reals *}
lemma real_sup_exists:
assumes ex: "\<exists>x. P x"
and bz: "\<exists>z. \<forall>x. P x \<longrightarrow> x < z"
shows "\<exists>s::real. \<forall>y. (\<exists>x. P x \<and> y < x) \<longleftrightarrow> y < s"
proof
from bz have "bdd_above (Collect P)"
by (force intro: less_imp_le)
then show "\<forall>y. (\<exists>x. P x \<and> y < x) \<longleftrightarrow> y < Sup (Collect P)"
using ex bz by (subst less_cSup_iff) auto
qed
subsection {* Fundamental theorem of algebra *}
lemma unimodular_reduce_norm:
assumes md: "cmod z = 1"
shows "cmod (z + 1) < 1 \<or> cmod (z - 1) < 1 \<or> cmod (z + ii) < 1 \<or> cmod (z - ii) < 1"
proof -
obtain x y where z: "z = Complex x y "
by (cases z) auto
from md z have xy: "x\<^sup>2 + y\<^sup>2 = 1"
by (simp add: cmod_def)
{
assume C: "cmod (z + 1) \<ge> 1" "cmod (z - 1) \<ge> 1" "cmod (z + ii) \<ge> 1" "cmod (z - ii) \<ge> 1"
from C z xy have "2 * x \<le> 1" "2 * x \<ge> -1" "2 * y \<le> 1" "2 * y \<ge> -1"
by (simp_all add: cmod_def power2_eq_square algebra_simps)
then have "abs (2 * x) \<le> 1" "abs (2 * y) \<le> 1"
by simp_all
then have "(abs (2 * x))\<^sup>2 \<le> 1\<^sup>2" "(abs (2 * y))\<^sup>2 \<le> 1\<^sup>2"
by - (rule power_mono, simp, simp)+
then have th0: "4 * x\<^sup>2 \<le> 1" "4 * y\<^sup>2 \<le> 1"
by (simp_all add: power_mult_distrib)
from add_mono[OF th0] xy have False by simp
}
then show ?thesis
unfolding linorder_not_le[symmetric] by blast
qed
text{* Hence we can always reduce modulus of @{text "1 + b z^n"} if nonzero *}
lemma reduce_poly_simple:
assumes b: "b \<noteq> 0"
and n: "n \<noteq> 0"
shows "\<exists>z. cmod (1 + b * z^n) < 1"
using n
proof (induct n rule: nat_less_induct)
fix n
assume IH: "\<forall>m<n. m \<noteq> 0 \<longrightarrow> (\<exists>z. cmod (1 + b * z ^ m) < 1)"
assume n: "n \<noteq> 0"
let ?P = "\<lambda>z n. cmod (1 + b * z ^ n) < 1"
{
assume e: "even n"
then have "\<exists>m. n = 2 * m"
by presburger
then obtain m where m: "n = 2 * m"
by blast
from n m have "m \<noteq> 0" "m < n"
by presburger+
with IH[rule_format, of m] obtain z where z: "?P z m"
by blast
from z have "?P (csqrt z) n"
by (simp add: m power_mult power2_csqrt)
then have "\<exists>z. ?P z n" ..
}
moreover
{
assume o: "odd n"
have th0: "cmod (complex_of_real (cmod b) / b) = 1"
using b by (simp add: norm_divide)
from o have "\<exists>m. n = Suc (2 * m)"
by presburger+
then obtain m where m: "n = Suc (2 * m)"
by blast
from unimodular_reduce_norm[OF th0] o
have "\<exists>v. cmod (complex_of_real (cmod b) / b + v^n) < 1"
apply (cases "cmod (complex_of_real (cmod b) / b + 1) < 1")
apply (rule_tac x="1" in exI)
apply simp
apply (cases "cmod (complex_of_real (cmod b) / b - 1) < 1")
apply (rule_tac x="-1" in exI)
apply simp
apply (cases "cmod (complex_of_real (cmod b) / b + ii) < 1")
apply (cases "even m")
apply (rule_tac x="ii" in exI)
apply (simp add: m power_mult)
apply (rule_tac x="- ii" in exI)
apply (simp add: m power_mult)
apply (cases "even m")
apply (rule_tac x="- ii" in exI)
apply (simp add: m power_mult)
apply (auto simp add: m power_mult)
apply (rule_tac x="ii" in exI)
apply (auto simp add: m power_mult)
done
then obtain v where v: "cmod (complex_of_real (cmod b) / b + v^n) < 1"
by blast
let ?w = "v / complex_of_real (root n (cmod b))"
from odd_real_root_pow[OF o, of "cmod b"]
have th1: "?w ^ n = v^n / complex_of_real (cmod b)"
by (simp add: power_divide of_real_power[symmetric])
have th2:"cmod (complex_of_real (cmod b) / b) = 1"
using b by (simp add: norm_divide)
then have th3: "cmod (complex_of_real (cmod b) / b) \<ge> 0"
by simp
have th4: "cmod (complex_of_real (cmod b) / b) *
cmod (1 + b * (v ^ n / complex_of_real (cmod b))) <
cmod (complex_of_real (cmod b) / b) * 1"
apply (simp only: norm_mult[symmetric] distrib_left)
using b v
apply (simp add: th2)
done
from mult_left_less_imp_less[OF th4 th3]
have "?P ?w n" unfolding th1 .
then have "\<exists>z. ?P z n" ..
}
ultimately show "\<exists>z. ?P z n" by blast
qed
text{* Bolzano-Weierstrass type property for closed disc in complex plane. *}
lemma metric_bound_lemma: "cmod (x - y) \<le> \<bar>Re x - Re y\<bar> + \<bar>Im x - Im y\<bar>"
using real_sqrt_sum_squares_triangle_ineq[of "Re x - Re y" 0 0 "Im x - Im y"]
unfolding cmod_def by simp
lemma bolzano_weierstrass_complex_disc:
assumes r: "\<forall>n. cmod (s n) \<le> r"
shows "\<exists>f z. subseq f \<and> (\<forall>e >0. \<exists>N. \<forall>n \<ge> N. cmod (s (f n) - z) < e)"
proof-
from seq_monosub[of "Re \<circ> s"]
obtain f where f: "subseq f" "monoseq (\<lambda>n. Re (s (f n)))"
unfolding o_def by blast
from seq_monosub[of "Im \<circ> s \<circ> f"]
obtain g where g: "subseq g" "monoseq (\<lambda>n. Im (s (f (g n))))"
unfolding o_def by blast
let ?h = "f \<circ> g"
from r[rule_format, of 0] have rp: "r \<ge> 0"
using norm_ge_zero[of "s 0"] by arith
have th: "\<forall>n. r + 1 \<ge> \<bar>Re (s n)\<bar>"
proof
fix n
from abs_Re_le_cmod[of "s n"] r[rule_format, of n]
show "\<bar>Re (s n)\<bar> \<le> r + 1" by arith
qed
have conv1: "convergent (\<lambda>n. Re (s (f n)))"
apply (rule Bseq_monoseq_convergent)
apply (simp add: Bseq_def)
apply (metis gt_ex le_less_linear less_trans order.trans th)
apply (rule f(2))
done
have th: "\<forall>n. r + 1 \<ge> \<bar>Im (s n)\<bar>"
proof
fix n
from abs_Im_le_cmod[of "s n"] r[rule_format, of n]
show "\<bar>Im (s n)\<bar> \<le> r + 1"
by arith
qed
have conv2: "convergent (\<lambda>n. Im (s (f (g n))))"
apply (rule Bseq_monoseq_convergent)
apply (simp add: Bseq_def)
apply (metis gt_ex le_less_linear less_trans order.trans th)
apply (rule g(2))
done
from conv1[unfolded convergent_def] obtain x where "LIMSEQ (\<lambda>n. Re (s (f n))) x"
by blast
then have x: "\<forall>r>0. \<exists>n0. \<forall>n\<ge>n0. \<bar>Re (s (f n)) - x\<bar> < r"
unfolding LIMSEQ_iff real_norm_def .
from conv2[unfolded convergent_def] obtain y where "LIMSEQ (\<lambda>n. Im (s (f (g n)))) y"
by blast
then have y: "\<forall>r>0. \<exists>n0. \<forall>n\<ge>n0. \<bar>Im (s (f (g n))) - y\<bar> < r"
unfolding LIMSEQ_iff real_norm_def .
let ?w = "Complex x y"
from f(1) g(1) have hs: "subseq ?h"
unfolding subseq_def by auto
{
fix e :: real
assume ep: "e > 0"
then have e2: "e/2 > 0"
by simp
from x[rule_format, OF e2] y[rule_format, OF e2]
obtain N1 N2 where N1: "\<forall>n\<ge>N1. \<bar>Re (s (f n)) - x\<bar> < e / 2"
and N2: "\<forall>n\<ge>N2. \<bar>Im (s (f (g n))) - y\<bar> < e / 2"
by blast
{
fix n
assume nN12: "n \<ge> N1 + N2"
then have nN1: "g n \<ge> N1" and nN2: "n \<ge> N2"
using seq_suble[OF g(1), of n] by arith+
from add_strict_mono[OF N1[rule_format, OF nN1] N2[rule_format, OF nN2]]
have "cmod (s (?h n) - ?w) < e"
using metric_bound_lemma[of "s (f (g n))" ?w] by simp
}
then have "\<exists>N. \<forall>n\<ge>N. cmod (s (?h n) - ?w) < e"
by blast
}
with hs show ?thesis by blast
qed
text{* Polynomial is continuous. *}
lemma poly_cont:
fixes p :: "'a::{comm_semiring_0,real_normed_div_algebra} poly"
assumes ep: "e > 0"
shows "\<exists>d >0. \<forall>w. 0 < norm (w - z) \<and> norm (w - z) < d \<longrightarrow> norm (poly p w - poly p z) < e"
proof -
obtain q where q: "degree q = degree p" "\<And>x. poly q x = poly p (z + x)"
proof
show "degree (offset_poly p z) = degree p"
by (rule degree_offset_poly)
show "\<And>x. poly (offset_poly p z) x = poly p (z + x)"
by (rule poly_offset_poly)
qed
have th: "\<And>w. poly q (w - z) = poly p w"
using q(2)[of "w - z" for w] by simp
show ?thesis unfolding th[symmetric]
proof (induct q)
case 0
then show ?case
using ep by auto
next
case (pCons c cs)
from poly_bound_exists[of 1 "cs"]
obtain m where m: "m > 0" "\<And>z. norm z \<le> 1 \<Longrightarrow> norm (poly cs z) \<le> m"
by blast
from ep m(1) have em0: "e/m > 0"
by (simp add: field_simps)
have one0: "1 > (0::real)"
by arith
from real_lbound_gt_zero[OF one0 em0]
obtain d where d: "d > 0" "d < 1" "d < e / m"
by blast
from d(1,3) m(1) have dm: "d * m > 0" "d * m < e"
by (simp_all add: field_simps)
show ?case
proof (rule ex_forward[OF real_lbound_gt_zero[OF one0 em0]], clarsimp simp add: norm_mult)
fix d w
assume H: "d > 0" "d < 1" "d < e/m" "w \<noteq> z" "norm (w - z) < d"
then have d1: "norm (w-z) \<le> 1" "d \<ge> 0"
by simp_all
from H(3) m(1) have dme: "d*m < e"
by (simp add: field_simps)
from H have th: "norm (w - z) \<le> d"
by simp
from mult_mono[OF th m(2)[OF d1(1)] d1(2) norm_ge_zero] dme
show "norm (w - z) * norm (poly cs (w - z)) < e"
by simp
qed
qed
qed
text{* Hence a polynomial attains minimum on a closed disc
in the complex plane. *}
lemma poly_minimum_modulus_disc: "\<exists>z. \<forall>w. cmod w \<le> r \<longrightarrow> cmod (poly p z) \<le> cmod (poly p w)"
proof -
{
assume "\<not> r \<ge> 0"
then have ?thesis
by (metis norm_ge_zero order.trans)
}
moreover
{
assume rp: "r \<ge> 0"
from rp have "cmod 0 \<le> r \<and> cmod (poly p 0) = - (- cmod (poly p 0))"
by simp
then have mth1: "\<exists>x z. cmod z \<le> r \<and> cmod (poly p z) = - x"
by blast
{
fix x z
assume H: "cmod z \<le> r" "cmod (poly p z) = - x" "\<not> x < 1"
then have "- x < 0 "
by arith
with H(2) norm_ge_zero[of "poly p z"] have False
by simp
}
then have mth2: "\<exists>z. \<forall>x. (\<exists>z. cmod z \<le> r \<and> cmod (poly p z) = - x) \<longrightarrow> x < z"
by blast
from real_sup_exists[OF mth1 mth2] obtain s where
s: "\<forall>y. (\<exists>x. (\<exists>z. cmod z \<le> r \<and> cmod (poly p z) = - x) \<and> y < x) \<longleftrightarrow> y < s" by blast
let ?m = "- s"
{
fix y
from s[rule_format, of "-y"]
have "(\<exists>z x. cmod z \<le> r \<and> - (- cmod (poly p z)) < y) \<longleftrightarrow> ?m < y"
unfolding minus_less_iff[of y ] equation_minus_iff by blast
}
note s1 = this[unfolded minus_minus]
from s1[of ?m] have s1m: "\<And>z x. cmod z \<le> r \<Longrightarrow> cmod (poly p z) \<ge> ?m"
by auto
{
fix n :: nat
from s1[rule_format, of "?m + 1/real (Suc n)"]
have "\<exists>z. cmod z \<le> r \<and> cmod (poly p z) < - s + 1 / real (Suc n)"
by simp
}
then have th: "\<forall>n. \<exists>z. cmod z \<le> r \<and> cmod (poly p z) < - s + 1 / real (Suc n)" ..
from choice[OF th] obtain g where
g: "\<forall>n. cmod (g n) \<le> r" "\<forall>n. cmod (poly p (g n)) <?m + 1 /real(Suc n)"
by blast
from bolzano_weierstrass_complex_disc[OF g(1)]
obtain f z where fz: "subseq f" "\<forall>e>0. \<exists>N. \<forall>n\<ge>N. cmod (g (f n) - z) < e"
by blast
{
fix w
assume wr: "cmod w \<le> r"
let ?e = "\<bar>cmod (poly p z) - ?m\<bar>"
{
assume e: "?e > 0"
then have e2: "?e/2 > 0"
by simp
from poly_cont[OF e2, of z p] obtain d where
d: "d > 0" "\<forall>w. 0<cmod (w - z)\<and> cmod(w - z) < d \<longrightarrow> cmod(poly p w - poly p z) < ?e/2"
by blast
{
fix w
assume w: "cmod (w - z) < d"
have "cmod(poly p w - poly p z) < ?e / 2"
using d(2)[rule_format, of w] w e by (cases "w = z") simp_all
}
note th1 = this
from fz(2) d(1) obtain N1 where N1: "\<forall>n\<ge>N1. cmod (g (f n) - z) < d"
by blast
from reals_Archimedean2[of "2/?e"] obtain N2 :: nat where N2: "2/?e < real N2"
by blast
have th2: "cmod (poly p (g (f (N1 + N2))) - poly p z) < ?e/2"
using N1[rule_format, of "N1 + N2"] th1 by simp
{
fix a b e2 m :: real
have "a < e2 \<Longrightarrow> \<bar>b - m\<bar> < e2 \<Longrightarrow> 2 * e2 \<le> \<bar>b - m\<bar> + a \<Longrightarrow> False"
by arith
}
note th0 = this
have ath: "\<And>m x e::real. m \<le> x \<Longrightarrow> x < m + e \<Longrightarrow> \<bar>x - m\<bar> < e"
by arith
from s1m[OF g(1)[rule_format]] have th31: "?m \<le> cmod(poly p (g (f (N1 + N2))))" .
from seq_suble[OF fz(1), of "N1 + N2"]
have th00: "real (Suc (N1 + N2)) \<le> real (Suc (f (N1 + N2)))"
by simp
have th000: "0 \<le> (1::real)" "(1::real) \<le> 1" "real (Suc (N1 + N2)) > 0"
using N2 by auto
from frac_le[OF th000 th00]
have th00: "?m + 1 / real (Suc (f (N1 + N2))) \<le> ?m + 1 / real (Suc (N1 + N2))"
by simp
from g(2)[rule_format, of "f (N1 + N2)"]
have th01:"cmod (poly p (g (f (N1 + N2)))) < - s + 1 / real (Suc (f (N1 + N2)))" .
from order_less_le_trans[OF th01 th00]
have th32: "cmod (poly p (g (f (N1 + N2)))) < ?m + (1/ real(Suc (N1 + N2)))" .
from N2 have "2/?e < real (Suc (N1 + N2))"
by arith
with e2 less_imp_inverse_less[of "2/?e" "real (Suc (N1 + N2))"]
have "?e/2 > 1/ real (Suc (N1 + N2))"
by (simp add: inverse_eq_divide)
with ath[OF th31 th32]
have thc1: "\<bar>cmod (poly p (g (f (N1 + N2)))) - ?m\<bar> < ?e/2"
by arith
have ath2: "\<And>a b c m::real. \<bar>a - b\<bar> \<le> c \<Longrightarrow> \<bar>b - m\<bar> \<le> \<bar>a - m\<bar> + c"
by arith
have th22: "\<bar>cmod (poly p (g (f (N1 + N2)))) - cmod (poly p z)\<bar> \<le>
cmod (poly p (g (f (N1 + N2))) - poly p z)"
by (simp add: norm_triangle_ineq3)
from ath2[OF th22, of ?m]
have thc2: "2 * (?e/2) \<le>
\<bar>cmod(poly p (g (f (N1 + N2)))) - ?m\<bar> + cmod (poly p (g (f (N1 + N2))) - poly p z)"
by simp
from th0[OF th2 thc1 thc2] have False .
}
then have "?e = 0"
by auto
then have "cmod (poly p z) = ?m"
by simp
with s1m[OF wr] have "cmod (poly p z) \<le> cmod (poly p w)"
by simp
}
then have ?thesis by blast
}
ultimately show ?thesis by blast
qed
text {* Nonzero polynomial in z goes to infinity as z does. *}
lemma poly_infinity:
fixes p:: "'a::{comm_semiring_0,real_normed_div_algebra} poly"
assumes ex: "p \<noteq> 0"
shows "\<exists>r. \<forall>z. r \<le> norm z \<longrightarrow> d \<le> norm (poly (pCons a p) z)"
using ex
proof (induct p arbitrary: a d)
case 0
then show ?case by simp
next
case (pCons c cs a d)
show ?case
proof (cases "cs = 0")
case False
with pCons.hyps obtain r where r: "\<forall>z. r \<le> norm z \<longrightarrow> d + norm a \<le> norm (poly (pCons c cs) z)"
by blast
let ?r = "1 + \<bar>r\<bar>"
{
fix z :: 'a
assume h: "1 + \<bar>r\<bar> \<le> norm z"
have r0: "r \<le> norm z"
using h by arith
from r[rule_format, OF r0] have th0: "d + norm a \<le> 1 * norm(poly (pCons c cs) z)"
by arith
from h have z1: "norm z \<ge> 1"
by arith
from order_trans[OF th0 mult_right_mono[OF z1 norm_ge_zero[of "poly (pCons c cs) z"]]]
have th1: "d \<le> norm(z * poly (pCons c cs) z) - norm a"
unfolding norm_mult by (simp add: algebra_simps)
from norm_diff_ineq[of "z * poly (pCons c cs) z" a]
have th2: "norm (z * poly (pCons c cs) z) - norm a \<le> norm (poly (pCons a (pCons c cs)) z)"
by (simp add: algebra_simps)
from th1 th2 have "d \<le> norm (poly (pCons a (pCons c cs)) z)"
by arith
}
then show ?thesis by blast
next
case True
with pCons.prems have c0: "c \<noteq> 0"
by simp
{
fix z :: 'a
assume h: "(\<bar>d\<bar> + norm a) / norm c \<le> norm z"
from c0 have "norm c > 0"
by simp
from h c0 have th0: "\<bar>d\<bar> + norm a \<le> norm (z * c)"
by (simp add: field_simps norm_mult)
have ath: "\<And>mzh mazh ma. mzh \<le> mazh + ma \<Longrightarrow> \<bar>d\<bar> + ma \<le> mzh \<Longrightarrow> d \<le> mazh"
by arith
from norm_diff_ineq[of "z * c" a] have th1: "norm (z * c) \<le> norm (a + z * c) + norm a"
by (simp add: algebra_simps)
from ath[OF th1 th0] have "d \<le> norm (poly (pCons a (pCons c cs)) z)"
using True by simp
}
then show ?thesis by blast
qed
qed
text {* Hence polynomial's modulus attains its minimum somewhere. *}
lemma poly_minimum_modulus: "\<exists>z.\<forall>w. cmod (poly p z) \<le> cmod (poly p w)"
proof (induct p)
case 0
then show ?case by simp
next
case (pCons c cs)
show ?case
proof (cases "cs = 0")
case False
from poly_infinity[OF False, of "cmod (poly (pCons c cs) 0)" c]
obtain r where r: "\<And>z. r \<le> cmod z \<Longrightarrow> cmod (poly (pCons c cs) 0) \<le> cmod (poly (pCons c cs) z)"
by blast
have ath: "\<And>z r. r \<le> cmod z \<or> cmod z \<le> \<bar>r\<bar>"
by arith
from poly_minimum_modulus_disc[of "\<bar>r\<bar>" "pCons c cs"]
obtain v where v: "\<And>w. cmod w \<le> \<bar>r\<bar> \<Longrightarrow> cmod (poly (pCons c cs) v) \<le> cmod (poly (pCons c cs) w)"
by blast
{
fix z
assume z: "r \<le> cmod z"
from v[of 0] r[OF z] have "cmod (poly (pCons c cs) v) \<le> cmod (poly (pCons c cs) z)"
by simp
}
note v0 = this
from v0 v ath[of r] show ?thesis
by blast
next
case True
with pCons.hyps show ?thesis by simp
qed
qed
text{* Constant function (non-syntactic characterization). *}
definition "constant f \<longleftrightarrow> (\<forall>x y. f x = f y)"
lemma nonconstant_length: "\<not> constant (poly p) \<Longrightarrow> psize p \<ge> 2"
by (induct p) (auto simp: constant_def psize_def)
lemma poly_replicate_append: "poly (monom 1 n * p) (x::'a::comm_ring_1) = x^n * poly p x"
by (simp add: poly_monom)
text {* Decomposition of polynomial, skipping zero coefficients
after the first. *}
lemma poly_decompose_lemma:
assumes nz: "\<not> (\<forall>z. z \<noteq> 0 \<longrightarrow> poly p z = (0::'a::idom))"
shows "\<exists>k a q. a \<noteq> 0 \<and> Suc (psize q + k) = psize p \<and> (\<forall>z. poly p z = z^k * poly (pCons a q) z)"
unfolding psize_def
using nz
proof (induct p)
case 0
then show ?case by simp
next
case (pCons c cs)
show ?case
proof (cases "c = 0")
case True
from pCons.hyps pCons.prems True show ?thesis
apply (auto)
apply (rule_tac x="k+1" in exI)
apply (rule_tac x="a" in exI, clarsimp)
apply (rule_tac x="q" in exI)
apply auto
done
next
case False
show ?thesis
apply (rule exI[where x=0])
apply (rule exI[where x=c], auto simp add: False)
done
qed
qed
lemma poly_decompose:
assumes nc: "\<not> constant (poly p)"
shows "\<exists>k a q. a \<noteq> (0::'a::idom) \<and> k \<noteq> 0 \<and>
psize q + k + 1 = psize p \<and>
(\<forall>z. poly p z = poly p 0 + z^k * poly (pCons a q) z)"
using nc
proof (induct p)
case 0
then show ?case
by (simp add: constant_def)
next
case (pCons c cs)
{
assume C: "\<forall>z. z \<noteq> 0 \<longrightarrow> poly cs z = 0"
{
fix x y
from C have "poly (pCons c cs) x = poly (pCons c cs) y"
by (cases "x = 0") auto
}
with pCons.prems have False
by (auto simp add: constant_def)
}
then have th: "\<not> (\<forall>z. z \<noteq> 0 \<longrightarrow> poly cs z = 0)" ..
from poly_decompose_lemma[OF th]
show ?case
apply clarsimp
apply (rule_tac x="k+1" in exI)
apply (rule_tac x="a" in exI)
apply simp
apply (rule_tac x="q" in exI)
apply (auto simp add: psize_def split: if_splits)
done
qed
text{* Fundamental theorem of algebra *}
lemma fundamental_theorem_of_algebra:
assumes nc: "\<not> constant (poly p)"
shows "\<exists>z::complex. poly p z = 0"
using nc
proof (induct "psize p" arbitrary: p rule: less_induct)
case less
let ?p = "poly p"
let ?ths = "\<exists>z. ?p z = 0"
from nonconstant_length[OF less(2)] have n2: "psize p \<ge> 2" .
from poly_minimum_modulus obtain c where c: "\<forall>w. cmod (?p c) \<le> cmod (?p w)"
by blast
show ?ths
proof (cases "?p c = 0")
case True
then show ?thesis by blast
next
case False
note pc0 = this
from poly_offset[of p c] obtain q where q: "psize q = psize p" "\<forall>x. poly q x = ?p (c + x)"
by blast
{
assume h: "constant (poly q)"
from q(2) have th: "\<forall>x. poly q (x - c) = ?p x"
by auto
{
fix x y
from th have "?p x = poly q (x - c)"
by auto
also have "\<dots> = poly q (y - c)"
using h unfolding constant_def by blast
also have "\<dots> = ?p y"
using th by auto
finally have "?p x = ?p y" .
}
with less(2) have False
unfolding constant_def by blast
}
then have qnc: "\<not> constant (poly q)"
by blast
from q(2) have pqc0: "?p c = poly q 0"
by simp
from c pqc0 have cq0: "\<forall>w. cmod (poly q 0) \<le> cmod (?p w)"
by simp
let ?a0 = "poly q 0"
from pc0 pqc0 have a00: "?a0 \<noteq> 0"
by simp
from a00 have qr: "\<forall>z. poly q z = poly (smult (inverse ?a0) q) z * ?a0"
by simp
let ?r = "smult (inverse ?a0) q"
have lgqr: "psize q = psize ?r"
using a00
unfolding psize_def degree_def
by (simp add: poly_eq_iff)
{
assume h: "\<And>x y. poly ?r x = poly ?r y"
{
fix x y
from qr[rule_format, of x] have "poly q x = poly ?r x * ?a0"
by auto
also have "\<dots> = poly ?r y * ?a0"
using h by simp
also have "\<dots> = poly q y"
using qr[rule_format, of y] by simp
finally have "poly q x = poly q y" .
}
with qnc have False
unfolding constant_def by blast
}
then have rnc: "\<not> constant (poly ?r)"
unfolding constant_def by blast
from qr[rule_format, of 0] a00 have r01: "poly ?r 0 = 1"
by auto
{
fix w
have "cmod (poly ?r w) < 1 \<longleftrightarrow> cmod (poly q w / ?a0) < 1"
using qr[rule_format, of w] a00 by (simp add: divide_inverse ac_simps)
also have "\<dots> \<longleftrightarrow> cmod (poly q w) < cmod ?a0"
using a00 unfolding norm_divide by (simp add: field_simps)
finally have "cmod (poly ?r w) < 1 \<longleftrightarrow> cmod (poly q w) < cmod ?a0" .
}
note mrmq_eq = this
from poly_decompose[OF rnc] obtain k a s where
kas: "a \<noteq> 0" "k \<noteq> 0" "psize s + k + 1 = psize ?r"
"\<forall>z. poly ?r z = poly ?r 0 + z^k* poly (pCons a s) z" by blast
{
assume "psize p = k + 1"
with kas(3) lgqr[symmetric] q(1) have s0: "s = 0"
by auto
{
fix w
have "cmod (poly ?r w) = cmod (1 + a * w ^ k)"
using kas(4)[rule_format, of w] s0 r01 by (simp add: algebra_simps)
}
note hth = this [symmetric]
from reduce_poly_simple[OF kas(1,2)] have "\<exists>w. cmod (poly ?r w) < 1"
unfolding hth by blast
}
moreover
{
assume kn: "psize p \<noteq> k + 1"
from kn kas(3) q(1) lgqr have k1n: "k + 1 < psize p"
by simp
have th01: "\<not> constant (poly (pCons 1 (monom a (k - 1))))"
unfolding constant_def poly_pCons poly_monom
using kas(1)
apply simp
apply (rule exI[where x=0])
apply (rule exI[where x=1])
apply simp
done
from kas(1) kas(2) have th02: "k + 1 = psize (pCons 1 (monom a (k - 1)))"
by (simp add: psize_def degree_monom_eq)
from less(1) [OF k1n [simplified th02] th01]
obtain w where w: "1 + w^k * a = 0"
unfolding poly_pCons poly_monom
using kas(2) by (cases k) (auto simp add: algebra_simps)
from poly_bound_exists[of "cmod w" s] obtain m where
m: "m > 0" "\<forall>z. cmod z \<le> cmod w \<longrightarrow> cmod (poly s z) \<le> m" by blast
have w0: "w \<noteq> 0"
using kas(2) w by (auto simp add: power_0_left)
from w have "(1 + w ^ k * a) - 1 = 0 - 1"
by simp
then have wm1: "w^k * a = - 1"
by simp
have inv0: "0 < inverse (cmod w ^ (k + 1) * m)"
using norm_ge_zero[of w] w0 m(1)
by (simp add: inverse_eq_divide zero_less_mult_iff)
with real_lbound_gt_zero[OF zero_less_one] obtain t where
t: "t > 0" "t < 1" "t < inverse (cmod w ^ (k + 1) * m)" by blast
let ?ct = "complex_of_real t"
let ?w = "?ct * w"
have "1 + ?w^k * (a + ?w * poly s ?w) = 1 + ?ct^k * (w^k * a) + ?w^k * ?w * poly s ?w"
using kas(1) by (simp add: algebra_simps power_mult_distrib)
also have "\<dots> = complex_of_real (1 - t^k) + ?w^k * ?w * poly s ?w"
unfolding wm1 by simp
finally have "cmod (1 + ?w^k * (a + ?w * poly s ?w)) =
cmod (complex_of_real (1 - t^k) + ?w^k * ?w * poly s ?w)"
by metis
with norm_triangle_ineq[of "complex_of_real (1 - t^k)" "?w^k * ?w * poly s ?w"]
have th11: "cmod (1 + ?w^k * (a + ?w * poly s ?w)) \<le> \<bar>1 - t^k\<bar> + cmod (?w^k * ?w * poly s ?w)"
unfolding norm_of_real by simp
have ath: "\<And>x t::real. 0 \<le> x \<Longrightarrow> x < t \<Longrightarrow> t \<le> 1 \<Longrightarrow> \<bar>1 - t\<bar> + x < 1"
by arith
have "t * cmod w \<le> 1 * cmod w"
apply (rule mult_mono)
using t(1,2)
apply auto
done
then have tw: "cmod ?w \<le> cmod w"
using t(1) by (simp add: norm_mult)
from t inv0 have "t * (cmod w ^ (k + 1) * m) < 1"
by (simp add: field_simps)
with zero_less_power[OF t(1), of k] have th30: "t^k * (t* (cmod w ^ (k + 1) * m)) < t^k * 1"
by (metis comm_mult_strict_left_mono)
have "cmod (?w^k * ?w * poly s ?w) = t^k * (t* (cmod w ^ (k + 1) * cmod (poly s ?w)))"
using w0 t(1)
by (simp add: algebra_simps power_mult_distrib norm_power norm_mult)
then have "cmod (?w^k * ?w * poly s ?w) \<le> t^k * (t* (cmod w ^ (k + 1) * m))"
using t(1,2) m(2)[rule_format, OF tw] w0
by auto
with th30 have th120: "cmod (?w^k * ?w * poly s ?w) < t^k"
by simp
from power_strict_mono[OF t(2), of k] t(1) kas(2) have th121: "t^k \<le> 1"
by auto
from ath[OF norm_ge_zero[of "?w^k * ?w * poly s ?w"] th120 th121]
have th12: "\<bar>1 - t^k\<bar> + cmod (?w^k * ?w * poly s ?w) < 1" .
from th11 th12 have "cmod (1 + ?w^k * (a + ?w * poly s ?w)) < 1"
by arith
then have "cmod (poly ?r ?w) < 1"
unfolding kas(4)[rule_format, of ?w] r01 by simp
then have "\<exists>w. cmod (poly ?r w) < 1"
by blast
}
ultimately have cr0_contr: "\<exists>w. cmod (poly ?r w) < 1"
by blast
from cr0_contr cq0 q(2) show ?thesis
unfolding mrmq_eq not_less[symmetric] by auto
qed
qed
text {* Alternative version with a syntactic notion of constant polynomial. *}
lemma fundamental_theorem_of_algebra_alt:
assumes nc: "\<not> (\<exists>a l. a \<noteq> 0 \<and> l = 0 \<and> p = pCons a l)"
shows "\<exists>z. poly p z = (0::complex)"
using nc
proof (induct p)
case 0
then show ?case by simp
next
case (pCons c cs)
show ?case
proof (cases "c = 0")
case True
then show ?thesis by auto
next
case False
{
assume nc: "constant (poly (pCons c cs))"
from nc[unfolded constant_def, rule_format, of 0]
have "\<forall>w. w \<noteq> 0 \<longrightarrow> poly cs w = 0" by auto
then have "cs = 0"
proof (induct cs)
case 0
then show ?case by simp
next
case (pCons d ds)
show ?case
proof (cases "d = 0")
case True
then show ?thesis using pCons.prems pCons.hyps by simp
next
case False
from poly_bound_exists[of 1 ds] obtain m where
m: "m > 0" "\<forall>z. \<forall>z. cmod z \<le> 1 \<longrightarrow> cmod (poly ds z) \<le> m" by blast
have dm: "cmod d / m > 0"
using False m(1) by (simp add: field_simps)
from real_lbound_gt_zero[OF dm zero_less_one] obtain x where
x: "x > 0" "x < cmod d / m" "x < 1" by blast
let ?x = "complex_of_real x"
from x have cx: "?x \<noteq> 0" "cmod ?x \<le> 1"
by simp_all
from pCons.prems[rule_format, OF cx(1)]
have cth: "cmod (?x*poly ds ?x) = cmod d"
by (simp add: eq_diff_eq[symmetric])
from m(2)[rule_format, OF cx(2)] x(1)
have th0: "cmod (?x*poly ds ?x) \<le> x*m"
by (simp add: norm_mult)
from x(2) m(1) have "x * m < cmod d"
by (simp add: field_simps)
with th0 have "cmod (?x*poly ds ?x) \<noteq> cmod d"
by auto
with cth show ?thesis
by blast
qed
qed
}
then have nc: "\<not> constant (poly (pCons c cs))"
using pCons.prems False by blast
from fundamental_theorem_of_algebra[OF nc] show ?thesis .
qed
qed
subsection{* Nullstellensatz, degrees and divisibility of polynomials *}
lemma nullstellensatz_lemma:
fixes p :: "complex poly"
assumes "\<forall>x. poly p x = 0 \<longrightarrow> poly q x = 0"
and "degree p = n"
and "n \<noteq> 0"
shows "p dvd (q ^ n)"
using assms
proof (induct n arbitrary: p q rule: nat_less_induct)
fix n :: nat
fix p q :: "complex poly"
assume IH: "\<forall>m<n. \<forall>p q.
(\<forall>x. poly p x = (0::complex) \<longrightarrow> poly q x = 0) \<longrightarrow>
degree p = m \<longrightarrow> m \<noteq> 0 \<longrightarrow> p dvd (q ^ m)"
and pq0: "\<forall>x. poly p x = 0 \<longrightarrow> poly q x = 0"
and dpn: "degree p = n"
and n0: "n \<noteq> 0"
from dpn n0 have pne: "p \<noteq> 0" by auto
let ?ths = "p dvd (q ^ n)"
{
fix a
assume a: "poly p a = 0"
{
assume oa: "order a p \<noteq> 0"
let ?op = "order a p"
from pne have ap: "([:- a, 1:] ^ ?op) dvd p" "\<not> [:- a, 1:] ^ (Suc ?op) dvd p"
using order by blast+
note oop = order_degree[OF pne, unfolded dpn]
{
assume q0: "q = 0"
then have ?ths using n0
by (simp add: power_0_left)
}
moreover
{
assume q0: "q \<noteq> 0"
from pq0[rule_format, OF a, unfolded poly_eq_0_iff_dvd]
obtain r where r: "q = [:- a, 1:] * r" by (rule dvdE)
from ap(1) obtain s where s: "p = [:- a, 1:] ^ ?op * s"
by (rule dvdE)
have sne: "s \<noteq> 0" using s pne by auto
{
assume ds0: "degree s = 0"
from ds0 obtain k where kpn: "s = [:k:]"
by (cases s) (auto split: if_splits)
from sne kpn have k: "k \<noteq> 0" by simp
let ?w = "([:1/k:] * ([:-a,1:] ^ (n - ?op))) * (r ^ n)"
have "q ^ n = p * ?w"
apply (subst r)
apply (subst s)
apply (subst kpn)
using k oop [of a]
apply (subst power_mult_distrib)
apply simp
apply (subst power_add [symmetric])
apply simp
done
then have ?ths
unfolding dvd_def by blast
}
moreover
{
assume ds0: "degree s \<noteq> 0"
from ds0 sne dpn s oa
have dsn: "degree s < n"
apply auto
apply (erule ssubst)
apply (simp add: degree_mult_eq degree_linear_power)
done
{
fix x assume h: "poly s x = 0"
{
assume xa: "x = a"
from h[unfolded xa poly_eq_0_iff_dvd] obtain u where u: "s = [:- a, 1:] * u"
by (rule dvdE)
have "p = [:- a, 1:] ^ (Suc ?op) * u"
apply (subst s)
apply (subst u)
apply (simp only: power_Suc ac_simps)
done
with ap(2)[unfolded dvd_def] have False
by blast
}
note xa = this
from h have "poly p x = 0"
by (subst s) simp
with pq0 have "poly q x = 0"
by blast
with r xa have "poly r x = 0"
by auto
}
note impth = this
from IH[rule_format, OF dsn, of s r] impth ds0
have "s dvd (r ^ (degree s))"
by blast
then obtain u where u: "r ^ (degree s) = s * u" ..
then have u': "\<And>x. poly s x * poly u x = poly r x ^ degree s"
by (simp only: poly_mult[symmetric] poly_power[symmetric])
let ?w = "(u * ([:-a,1:] ^ (n - ?op))) * (r ^ (n - degree s))"
from oop[of a] dsn have "q ^ n = p * ?w"
apply -
apply (subst s)
apply (subst r)
apply (simp only: power_mult_distrib)
apply (subst mult.assoc [where b=s])
apply (subst mult.assoc [where a=u])
apply (subst mult.assoc [where b=u, symmetric])
apply (subst u [symmetric])
apply (simp add: ac_simps power_add [symmetric])
done
then have ?ths
unfolding dvd_def by blast
}
ultimately have ?ths by blast
}
ultimately have ?ths by blast
}
then have ?ths using a order_root pne by blast
}
moreover
{
assume exa: "\<not> (\<exists>a. poly p a = 0)"
from fundamental_theorem_of_algebra_alt[of p] exa
obtain c where ccs: "c \<noteq> 0" "p = pCons c 0"
by blast
then have pp: "\<And>x. poly p x = c"
by simp
let ?w = "[:1/c:] * (q ^ n)"
from ccs have "(q ^ n) = (p * ?w)"
by simp
then have ?ths
unfolding dvd_def by blast
}
ultimately show ?ths by blast
qed
lemma nullstellensatz_univariate:
"(\<forall>x. poly p x = (0::complex) \<longrightarrow> poly q x = 0) \<longleftrightarrow>
p dvd (q ^ (degree p)) \<or> (p = 0 \<and> q = 0)"
proof -
{
assume pe: "p = 0"
then have eq: "(\<forall>x. poly p x = (0::complex) \<longrightarrow> poly q x = 0) \<longleftrightarrow> q = 0"
by (auto simp add: poly_all_0_iff_0)
{
assume "p dvd (q ^ (degree p))"
then obtain r where r: "q ^ (degree p) = p * r" ..
from r pe have False by simp
}
with eq pe have ?thesis by blast
}
moreover
{
assume pe: "p \<noteq> 0"
{
assume dp: "degree p = 0"
then obtain k where k: "p = [:k:]" "k \<noteq> 0" using pe
by (cases p) (simp split: if_splits)
then have th1: "\<forall>x. poly p x \<noteq> 0"
by simp
from k dp have "q ^ (degree p) = p * [:1/k:]"
by (simp add: one_poly_def)
then have th2: "p dvd (q ^ (degree p))" ..
from th1 th2 pe have ?thesis
by blast
}
moreover
{
assume dp: "degree p \<noteq> 0"
then obtain n where n: "degree p = Suc n "
by (cases "degree p") auto
{
assume "p dvd (q ^ (Suc n))"
then obtain u where u: "q ^ (Suc n) = p * u" ..
{
fix x
assume h: "poly p x = 0" "poly q x \<noteq> 0"
then have "poly (q ^ (Suc n)) x \<noteq> 0"
by simp
then have False using u h(1)
by (simp only: poly_mult) simp
}
}
with n nullstellensatz_lemma[of p q "degree p"] dp
have ?thesis by auto
}
ultimately have ?thesis by blast
}
ultimately show ?thesis by blast
qed
text {* Useful lemma *}
lemma constant_degree:
fixes p :: "'a::{idom,ring_char_0} poly"
shows "constant (poly p) \<longleftrightarrow> degree p = 0" (is "?lhs = ?rhs")
proof
assume l: ?lhs
from l[unfolded constant_def, rule_format, of _ "0"]
have th: "poly p = poly [:poly p 0:]"
by auto
then have "p = [:poly p 0:]"
by (simp add: poly_eq_poly_eq_iff)
then have "degree p = degree [:poly p 0:]"
by simp
then show ?rhs
by simp
next
assume r: ?rhs
then obtain k where "p = [:k:]"
by (cases p) (simp split: if_splits)
then show ?lhs
unfolding constant_def by auto
qed
lemma divides_degree:
assumes pq: "p dvd (q:: complex poly)"
shows "degree p \<le> degree q \<or> q = 0"
by (metis dvd_imp_degree_le pq)
text {* Arithmetic operations on multivariate polynomials. *}
lemma mpoly_base_conv:
fixes x :: "'a::comm_ring_1"
shows "0 = poly 0 x" "c = poly [:c:] x" "x = poly [:0,1:] x"
by simp_all
lemma mpoly_norm_conv:
fixes x :: "'a::comm_ring_1"
shows "poly [:0:] x = poly 0 x" "poly [:poly 0 y:] x = poly 0 x"
by simp_all
lemma mpoly_sub_conv:
fixes x :: "'a::comm_ring_1"
shows "poly p x - poly q x = poly p x + -1 * poly q x"
by simp
lemma poly_pad_rule: "poly p x = 0 \<Longrightarrow> poly (pCons 0 p) x = 0"
by simp
lemma poly_cancel_eq_conv:
fixes x :: "'a::field"
shows "x = 0 \<Longrightarrow> a \<noteq> 0 \<Longrightarrow> y = 0 \<longleftrightarrow> a * y - b * x = 0"
by auto
lemma poly_divides_pad_rule:
fixes p:: "('a::comm_ring_1) poly"
assumes pq: "p dvd q"
shows "p dvd (pCons 0 q)"
proof -
have "pCons 0 q = q * [:0,1:]" by simp
then have "q dvd (pCons 0 q)" ..
with pq show ?thesis by (rule dvd_trans)
qed
lemma poly_divides_conv0:
fixes p:: "'a::field poly"
assumes lgpq: "degree q < degree p"
and lq: "p \<noteq> 0"
shows "p dvd q \<longleftrightarrow> q = 0" (is "?lhs \<longleftrightarrow> ?rhs")
proof
assume r: ?rhs
then have "q = p * 0" by simp
then show ?lhs ..
next
assume l: ?lhs
show ?rhs
proof (cases "q = 0")
case True
then show ?thesis by simp
next
assume q0: "q \<noteq> 0"
from l q0 have "degree p \<le> degree q"
by (rule dvd_imp_degree_le)
with lgpq show ?thesis by simp
qed
qed
lemma poly_divides_conv1:
fixes p :: "'a::field poly"
assumes a0: "a \<noteq> 0"
and pp': "p dvd p'"
and qrp': "smult a q - p' = r"
shows "p dvd q \<longleftrightarrow> p dvd r" (is "?lhs \<longleftrightarrow> ?rhs")
proof
from pp' obtain t where t: "p' = p * t" ..
{
assume l: ?lhs
then obtain u where u: "q = p * u" ..
have "r = p * (smult a u - t)"
using u qrp' [symmetric] t by (simp add: algebra_simps)
then show ?rhs ..
next
assume r: ?rhs
then obtain u where u: "r = p * u" ..
from u [symmetric] t qrp' [symmetric] a0
have "q = p * smult (1/a) (u + t)" by (simp add: algebra_simps)
then show ?lhs ..
}
qed
lemma basic_cqe_conv1:
"(\<exists>x. poly p x = 0 \<and> poly 0 x \<noteq> 0) \<longleftrightarrow> False"
"(\<exists>x. poly 0 x \<noteq> 0) \<longleftrightarrow> False"
"(\<exists>x. poly [:c:] x \<noteq> 0) \<longleftrightarrow> c \<noteq> 0"
"(\<exists>x. poly 0 x = 0) \<longleftrightarrow> True"
"(\<exists>x. poly [:c:] x = 0) \<longleftrightarrow> c = 0"
by simp_all
lemma basic_cqe_conv2:
assumes l: "p \<noteq> 0"
shows "\<exists>x. poly (pCons a (pCons b p)) x = (0::complex)"
proof -
{
fix h t
assume h: "h \<noteq> 0" "t = 0" and "pCons a (pCons b p) = pCons h t"
with l have False by simp
}
then have th: "\<not> (\<exists> h t. h \<noteq> 0 \<and> t = 0 \<and> pCons a (pCons b p) = pCons h t)"
by blast
from fundamental_theorem_of_algebra_alt[OF th] show ?thesis
by auto
qed
lemma basic_cqe_conv_2b: "(\<exists>x. poly p x \<noteq> (0::complex)) \<longleftrightarrow> p \<noteq> 0"
by (metis poly_all_0_iff_0)
lemma basic_cqe_conv3:
fixes p q :: "complex poly"
assumes l: "p \<noteq> 0"
shows "(\<exists>x. poly (pCons a p) x = 0 \<and> poly q x \<noteq> 0) \<longleftrightarrow> \<not> (pCons a p) dvd (q ^ psize p)"
proof -
from l have dp: "degree (pCons a p) = psize p"
by (simp add: psize_def)
from nullstellensatz_univariate[of "pCons a p" q] l
show ?thesis
by (metis dp pCons_eq_0_iff)
qed
lemma basic_cqe_conv4:
fixes p q :: "complex poly"
assumes h: "\<And>x. poly (q ^ n) x = poly r x"
shows "p dvd (q ^ n) \<longleftrightarrow> p dvd r"
proof -
from h have "poly (q ^ n) = poly r"
by auto
then have "(q ^ n) = r"
by (simp add: poly_eq_poly_eq_iff)
then show "p dvd (q ^ n) \<longleftrightarrow> p dvd r"
by simp
qed
lemma poly_const_conv:
fixes x :: "'a::comm_ring_1"
shows "poly [:c:] x = y \<longleftrightarrow> c = y"
by simp
end