Added function partition_rules'.
(* Title: ZF/pair
ID: $Id$
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1992 University of Cambridge
*)
header{*Ordered Pairs*}
theory pair imports upair
uses "simpdata.ML" begin
(** Lemmas for showing that <a,b> uniquely determines a and b **)
lemma singleton_eq_iff [iff]: "{a} = {b} <-> a=b"
by (rule extension [THEN iff_trans], blast)
lemma doubleton_eq_iff: "{a,b} = {c,d} <-> (a=c & b=d) | (a=d & b=c)"
by (rule extension [THEN iff_trans], blast)
lemma Pair_iff [simp]: "<a,b> = <c,d> <-> a=c & b=d"
by (simp add: Pair_def doubleton_eq_iff, blast)
lemmas Pair_inject = Pair_iff [THEN iffD1, THEN conjE, standard, elim!]
lemmas Pair_inject1 = Pair_iff [THEN iffD1, THEN conjunct1, standard]
lemmas Pair_inject2 = Pair_iff [THEN iffD1, THEN conjunct2, standard]
lemma Pair_not_0: "<a,b> ~= 0"
apply (unfold Pair_def)
apply (blast elim: equalityE)
done
lemmas Pair_neq_0 = Pair_not_0 [THEN notE, standard, elim!]
declare sym [THEN Pair_neq_0, elim!]
lemma Pair_neq_fst: "<a,b>=a ==> P"
apply (unfold Pair_def)
apply (rule consI1 [THEN mem_asym, THEN FalseE])
apply (erule subst)
apply (rule consI1)
done
lemma Pair_neq_snd: "<a,b>=b ==> P"
apply (unfold Pair_def)
apply (rule consI1 [THEN consI2, THEN mem_asym, THEN FalseE])
apply (erule subst)
apply (rule consI1 [THEN consI2])
done
subsection{*Sigma: Disjoint Union of a Family of Sets*}
text{*Generalizes Cartesian product*}
lemma Sigma_iff [simp]: "<a,b>: Sigma(A,B) <-> a:A & b:B(a)"
by (simp add: Sigma_def)
lemma SigmaI [TC,intro!]: "[| a:A; b:B(a) |] ==> <a,b> : Sigma(A,B)"
by simp
lemmas SigmaD1 = Sigma_iff [THEN iffD1, THEN conjunct1, standard]
lemmas SigmaD2 = Sigma_iff [THEN iffD1, THEN conjunct2, standard]
(*The general elimination rule*)
lemma SigmaE [elim!]:
"[| c: Sigma(A,B);
!!x y.[| x:A; y:B(x); c=<x,y> |] ==> P
|] ==> P"
by (unfold Sigma_def, blast)
lemma SigmaE2 [elim!]:
"[| <a,b> : Sigma(A,B);
[| a:A; b:B(a) |] ==> P
|] ==> P"
by (unfold Sigma_def, blast)
lemma Sigma_cong:
"[| A=A'; !!x. x:A' ==> B(x)=B'(x) |] ==>
Sigma(A,B) = Sigma(A',B')"
by (simp add: Sigma_def)
(*Sigma_cong, Pi_cong NOT given to Addcongs: they cause
flex-flex pairs and the "Check your prover" error. Most
Sigmas and Pis are abbreviated as * or -> *)
lemma Sigma_empty1 [simp]: "Sigma(0,B) = 0"
by blast
lemma Sigma_empty2 [simp]: "A*0 = 0"
by blast
lemma Sigma_empty_iff: "A*B=0 <-> A=0 | B=0"
by blast
subsection{*Projections @{term fst} and @{term snd}*}
lemma fst_conv [simp]: "fst(<a,b>) = a"
by (simp add: fst_def)
lemma snd_conv [simp]: "snd(<a,b>) = b"
by (simp add: snd_def)
lemma fst_type [TC]: "p:Sigma(A,B) ==> fst(p) : A"
by auto
lemma snd_type [TC]: "p:Sigma(A,B) ==> snd(p) : B(fst(p))"
by auto
lemma Pair_fst_snd_eq: "a: Sigma(A,B) ==> <fst(a),snd(a)> = a"
by auto
subsection{*The Eliminator, @{term split}*}
(*A META-equality, so that it applies to higher types as well...*)
lemma split [simp]: "split(%x y. c(x,y), <a,b>) == c(a,b)"
by (simp add: split_def)
lemma split_type [TC]:
"[| p:Sigma(A,B);
!!x y.[| x:A; y:B(x) |] ==> c(x,y):C(<x,y>)
|] ==> split(%x y. c(x,y), p) : C(p)"
apply (erule SigmaE, auto)
done
lemma expand_split:
"u: A*B ==>
R(split(c,u)) <-> (ALL x:A. ALL y:B. u = <x,y> --> R(c(x,y)))"
apply (simp add: split_def)
apply auto
done
subsection{*A version of @{term split} for Formulae: Result Type @{typ o}*}
lemma splitI: "R(a,b) ==> split(R, <a,b>)"
by (simp add: split_def)
lemma splitE:
"[| split(R,z); z:Sigma(A,B);
!!x y. [| z = <x,y>; R(x,y) |] ==> P
|] ==> P"
apply (simp add: split_def)
apply (erule SigmaE, force)
done
lemma splitD: "split(R,<a,b>) ==> R(a,b)"
by (simp add: split_def)
text {*
\bigskip Complex rules for Sigma.
*}
lemma split_paired_Bex_Sigma [simp]:
"(\<exists>z \<in> Sigma(A,B). P(z)) <-> (\<exists>x \<in> A. \<exists>y \<in> B(x). P(<x,y>))"
by blast
lemma split_paired_Ball_Sigma [simp]:
"(\<forall>z \<in> Sigma(A,B). P(z)) <-> (\<forall>x \<in> A. \<forall>y \<in> B(x). P(<x,y>))"
by blast
end