(* Title: ZF/pair
ID: $Id$
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1992 University of Cambridge
Ordered pairs in Zermelo-Fraenkel Set Theory
*)
(** Lemmas for showing that <a,b> uniquely determines a and b **)
qed_goal "singleton_eq_iff" thy
"{a} = {b} <-> a=b"
(fn _=> [ (resolve_tac [extension RS iff_trans] 1),
(Blast_tac 1) ]);
qed_goal "doubleton_eq_iff" thy
"{a,b} = {c,d} <-> (a=c & b=d) | (a=d & b=c)"
(fn _=> [ (resolve_tac [extension RS iff_trans] 1),
(Blast_tac 1) ]);
qed_goalw "Pair_iff" thy [Pair_def]
"<a,b> = <c,d> <-> a=c & b=d"
(fn _=> [ (simp_tac (simpset() addsimps [doubleton_eq_iff]) 1),
(Blast_tac 1) ]);
Addsimps [Pair_iff];
bind_thm ("Pair_inject", Pair_iff RS iffD1 RS conjE);
AddSEs [Pair_inject];
bind_thm ("Pair_inject1", Pair_iff RS iffD1 RS conjunct1);
bind_thm ("Pair_inject2", Pair_iff RS iffD1 RS conjunct2);
qed_goalw "Pair_not_0" thy [Pair_def] "<a,b> ~= 0"
(fn _ => [ (blast_tac (claset() addEs [equalityE]) 1) ]);
bind_thm ("Pair_neq_0", Pair_not_0 RS notE);
AddSEs [Pair_neq_0, sym RS Pair_neq_0];
qed_goalw "Pair_neq_fst" thy [Pair_def] "<a,b>=a ==> P"
(fn [major]=>
[ (rtac (consI1 RS mem_asym RS FalseE) 1),
(rtac (major RS subst) 1),
(rtac consI1 1) ]);
qed_goalw "Pair_neq_snd" thy [Pair_def] "<a,b>=b ==> P"
(fn [major]=>
[ (rtac (consI1 RS consI2 RS mem_asym RS FalseE) 1),
(rtac (major RS subst) 1),
(rtac (consI1 RS consI2) 1) ]);
(*** Sigma: Disjoint union of a family of sets
Generalizes Cartesian product ***)
qed_goalw "Sigma_iff" thy [Sigma_def] "<a,b>: Sigma(A,B) <-> a:A & b:B(a)"
(fn _ => [ Blast_tac 1 ]);
Addsimps [Sigma_iff];
qed_goal "SigmaI" thy
"!!a b. [| a:A; b:B(a) |] ==> <a,b> : Sigma(A,B)"
(fn _ => [ Asm_simp_tac 1 ]);
AddTCs [SigmaI];
bind_thm ("SigmaD1", Sigma_iff RS iffD1 RS conjunct1);
bind_thm ("SigmaD2", Sigma_iff RS iffD1 RS conjunct2);
(*The general elimination rule*)
qed_goalw "SigmaE" thy [Sigma_def]
"[| c: Sigma(A,B); \
\ !!x y.[| x:A; y:B(x); c=<x,y> |] ==> P \
\ |] ==> P"
(fn major::prems=>
[ (cut_facts_tac [major] 1),
(REPEAT (eresolve_tac [UN_E, singletonE] 1 ORELSE ares_tac prems 1)) ]);
qed_goal "SigmaE2" thy
"[| <a,b> : Sigma(A,B); \
\ [| a:A; b:B(a) |] ==> P \
\ |] ==> P"
(fn [major,minor]=>
[ (rtac minor 1),
(rtac (major RS SigmaD1) 1),
(rtac (major RS SigmaD2) 1) ]);
qed_goalw "Sigma_cong" thy [Sigma_def]
"[| A=A'; !!x. x:A' ==> B(x)=B'(x) |] ==> \
\ Sigma(A,B) = Sigma(A',B')"
(fn prems=> [ (simp_tac (simpset() addsimps prems) 1) ]);
(*Sigma_cong, Pi_cong NOT given to Addcongs: they cause
flex-flex pairs and the "Check your prover" error. Most
Sigmas and Pis are abbreviated as * or -> *)
AddSIs [SigmaI];
AddSEs [SigmaE2, SigmaE];
qed_goal "Sigma_empty1" thy "Sigma(0,B) = 0"
(fn _ => [ (Blast_tac 1) ]);
qed_goal "Sigma_empty2" thy "A*0 = 0"
(fn _ => [ (Blast_tac 1) ]);
Addsimps [Sigma_empty1, Sigma_empty2];
Goal "A*B=0 <-> A=0 | B=0";
by (Blast_tac 1);
qed "Sigma_empty_iff";
(*** Projections: fst, snd ***)
qed_goalw "fst_conv" thy [fst_def] "fst(<a,b>) = a"
(fn _=> [ (Blast_tac 1) ]);
qed_goalw "snd_conv" thy [snd_def] "snd(<a,b>) = b"
(fn _=> [ (Blast_tac 1) ]);
Addsimps [fst_conv,snd_conv];
qed_goal "fst_type" thy "!!p. p:Sigma(A,B) ==> fst(p) : A"
(fn _=> [ Auto_tac ]);
qed_goal "snd_type" thy "!!p. p:Sigma(A,B) ==> snd(p) : B(fst(p))"
(fn _=> [ Auto_tac ]);
qed_goal "Pair_fst_snd_eq" thy
"!!a A B. a: Sigma(A,B) ==> <fst(a),snd(a)> = a"
(fn _=> [ Auto_tac ]);
(*** Eliminator - split ***)
(*A META-equality, so that it applies to higher types as well...*)
Goalw [split_def] "split(%x y. c(x,y), <a,b>) == c(a,b)";
by (Simp_tac 1);
qed "split";
Addsimps [split];
qed_goal "split_type" thy
"[| p:Sigma(A,B); \
\ !!x y.[| x:A; y:B(x) |] ==> c(x,y):C(<x,y>) \
\ |] ==> split(%x y. c(x,y), p) : C(p)"
(fn major::prems=>
[ (rtac (major RS SigmaE) 1),
(asm_simp_tac (simpset() addsimps prems) 1) ]);
AddTCs [split_type];
Goalw [split_def]
"u: A*B ==> \
\ R(split(c,u)) <-> (ALL x:A. ALL y:B. u = <x,y> --> R(c(x,y)))";
by Auto_tac;
qed "expand_split";
(*** split for predicates: result type o ***)
Goalw [split_def] "R(a,b) ==> split(R, <a,b>)";
by (Asm_simp_tac 1);
qed "splitI";
val major::sigma::prems = Goalw [split_def]
"[| split(R,z); z:Sigma(A,B); \
\ !!x y. [| z = <x,y>; R(x,y) |] ==> P \
\ |] ==> P";
by (rtac (sigma RS SigmaE) 1);
by (cut_facts_tac [major] 1);
by (REPEAT (ares_tac prems 1));
by (Asm_full_simp_tac 1);
qed "splitE";
Goalw [split_def] "split(R,<a,b>) ==> R(a,b)";
by (Full_simp_tac 1);
qed "splitD";