(* Title: HOL/Cardinals/Cardinal_Order_Relation_Base.thy
Author: Andrei Popescu, TU Muenchen
Copyright 2012
Cardinal-order relations (base).
*)
header {* Cardinal-Order Relations (Base) *}
theory Cardinal_Order_Relation_Base
imports Constructions_on_Wellorders_Base
begin
text{* In this section, we define cardinal-order relations to be minim well-orders
on their field. Then we define the cardinal of a set to be {\em some} cardinal-order
relation on that set, which will be unique up to order isomorphism. Then we study
the connection between cardinals and:
\begin{itemize}
\item standard set-theoretic constructions: products,
sums, unions, lists, powersets, set-of finite sets operator;
\item finiteness and infiniteness (in particular, with the numeric cardinal operator
for finite sets, @{text "card"}, from the theory @{text "Finite_Sets.thy"}).
\end{itemize}
%
On the way, we define the canonical $\omega$ cardinal and finite cardinals. We also
define (again, up to order isomorphism) the successor of a cardinal, and show that
any cardinal admits a successor.
Main results of this section are the existence of cardinal relations and the
facts that, in the presence of infiniteness,
most of the standard set-theoretic constructions (except for the powerset)
{\em do not increase cardinality}. In particular, e.g., the set of words/lists over
any infinite set has the same cardinality (hence, is in bijection) with that set.
*}
subsection {* Cardinal orders *}
text{* A cardinal order in our setting shall be a well-order {\em minim} w.r.t. the
order-embedding relation, @{text "\<le>o"} (which is the same as being {\em minimal} w.r.t. the
strict order-embedding relation, @{text "<o"}), among all the well-orders on its field. *}
definition card_order_on :: "'a set \<Rightarrow> 'a rel \<Rightarrow> bool"
where
"card_order_on A r \<equiv> well_order_on A r \<and> (\<forall>r'. well_order_on A r' \<longrightarrow> r \<le>o r')"
abbreviation "Card_order r \<equiv> card_order_on (Field r) r"
abbreviation "card_order r \<equiv> card_order_on UNIV r"
lemma card_order_on_well_order_on:
assumes "card_order_on A r"
shows "well_order_on A r"
using assms unfolding card_order_on_def by simp
lemma card_order_on_Card_order:
"card_order_on A r \<Longrightarrow> A = Field r \<and> Card_order r"
unfolding card_order_on_def using rel.well_order_on_Field by blast
text{* The existence of a cardinal relation on any given set (which will mean
that any set has a cardinal) follows from two facts:
\begin{itemize}
\item Zermelo's theorem (proved in @{text "Zorn.thy"} as theorem @{text "well_order_on"}),
which states that on any given set there exists a well-order;
\item The well-founded-ness of @{text "<o"}, ensuring that then there exists a minimal
such well-order, i.e., a cardinal order.
\end{itemize}
*}
theorem card_order_on: "\<exists>r. card_order_on A r"
proof-
obtain R where R_def: "R = {r. well_order_on A r}" by blast
have 1: "R \<noteq> {} \<and> (\<forall>r \<in> R. Well_order r)"
using well_order_on[of A] R_def rel.well_order_on_Well_order by blast
hence "\<exists>r \<in> R. \<forall>r' \<in> R. r \<le>o r'"
using exists_minim_Well_order[of R] by auto
thus ?thesis using R_def unfolding card_order_on_def by auto
qed
lemma card_order_on_ordIso:
assumes CO: "card_order_on A r" and CO': "card_order_on A r'"
shows "r =o r'"
using assms unfolding card_order_on_def
using ordIso_iff_ordLeq by blast
lemma Card_order_ordIso:
assumes CO: "Card_order r" and ISO: "r' =o r"
shows "Card_order r'"
using ISO unfolding ordIso_def
proof(unfold card_order_on_def, auto)
fix p' assume "well_order_on (Field r') p'"
hence 0: "Well_order p' \<and> Field p' = Field r'"
using rel.well_order_on_Well_order by blast
obtain f where 1: "iso r' r f" and 2: "Well_order r \<and> Well_order r'"
using ISO unfolding ordIso_def by auto
hence 3: "inj_on f (Field r') \<and> f ` (Field r') = Field r"
by (auto simp add: iso_iff embed_inj_on)
let ?p = "dir_image p' f"
have 4: "p' =o ?p \<and> Well_order ?p"
using 0 2 3 by (auto simp add: dir_image_ordIso Well_order_dir_image)
moreover have "Field ?p = Field r"
using 0 3 by (auto simp add: dir_image_Field2 order_on_defs)
ultimately have "well_order_on (Field r) ?p" by auto
hence "r \<le>o ?p" using CO unfolding card_order_on_def by auto
thus "r' \<le>o p'"
using ISO 4 ordLeq_ordIso_trans ordIso_ordLeq_trans ordIso_symmetric by blast
qed
lemma Card_order_ordIso2:
assumes CO: "Card_order r" and ISO: "r =o r'"
shows "Card_order r'"
using assms Card_order_ordIso ordIso_symmetric by blast
subsection {* Cardinal of a set *}
text{* We define the cardinal of set to be {\em some} cardinal order on that set.
We shall prove that this notion is unique up to order isomorphism, meaning
that order isomorphism shall be the true identity of cardinals. *}
definition card_of :: "'a set \<Rightarrow> 'a rel" ("|_|" )
where "card_of A = (SOME r. card_order_on A r)"
lemma card_of_card_order_on: "card_order_on A |A|"
unfolding card_of_def by (auto simp add: card_order_on someI_ex)
lemma card_of_well_order_on: "well_order_on A |A|"
using card_of_card_order_on card_order_on_def by blast
lemma Field_card_of: "Field |A| = A"
using card_of_card_order_on[of A] unfolding card_order_on_def
using rel.well_order_on_Field by blast
lemma card_of_Card_order: "Card_order |A|"
by (simp only: card_of_card_order_on Field_card_of)
corollary ordIso_card_of_imp_Card_order:
"r =o |A| \<Longrightarrow> Card_order r"
using card_of_Card_order Card_order_ordIso by blast
lemma card_of_Well_order: "Well_order |A|"
using card_of_Card_order unfolding card_order_on_def by auto
lemma card_of_refl: "|A| =o |A|"
using card_of_Well_order ordIso_reflexive by blast
lemma card_of_least: "well_order_on A r \<Longrightarrow> |A| \<le>o r"
using card_of_card_order_on unfolding card_order_on_def by blast
lemma card_of_ordIso:
"(\<exists>f. bij_betw f A B) = ( |A| =o |B| )"
proof(auto)
fix f assume *: "bij_betw f A B"
then obtain r where "well_order_on B r \<and> |A| =o r"
using Well_order_iso_copy card_of_well_order_on by blast
hence "|B| \<le>o |A|" using card_of_least
ordLeq_ordIso_trans ordIso_symmetric by blast
moreover
{let ?g = "inv_into A f"
have "bij_betw ?g B A" using * bij_betw_inv_into by blast
then obtain r where "well_order_on A r \<and> |B| =o r"
using Well_order_iso_copy card_of_well_order_on by blast
hence "|A| \<le>o |B|" using card_of_least
ordLeq_ordIso_trans ordIso_symmetric by blast
}
ultimately show "|A| =o |B|" using ordIso_iff_ordLeq by blast
next
assume "|A| =o |B|"
then obtain f where "iso ( |A| ) ( |B| ) f"
unfolding ordIso_def by auto
hence "bij_betw f A B" unfolding iso_def Field_card_of by simp
thus "\<exists>f. bij_betw f A B" by auto
qed
lemma card_of_ordLeq:
"(\<exists>f. inj_on f A \<and> f ` A \<le> B) = ( |A| \<le>o |B| )"
proof(auto)
fix f assume *: "inj_on f A" and **: "f ` A \<le> B"
{assume "|B| <o |A|"
hence "|B| \<le>o |A|" using ordLeq_iff_ordLess_or_ordIso by blast
then obtain g where "embed ( |B| ) ( |A| ) g"
unfolding ordLeq_def by auto
hence 1: "inj_on g B \<and> g ` B \<le> A" using embed_inj_on[of "|B|" "|A|" "g"]
card_of_Well_order[of "B"] Field_card_of[of "B"] Field_card_of[of "A"]
embed_Field[of "|B|" "|A|" g] by auto
obtain h where "bij_betw h A B"
using * ** 1 Cantor_Bernstein[of f] by fastforce
hence "|A| =o |B|" using card_of_ordIso by blast
hence "|A| \<le>o |B|" using ordIso_iff_ordLeq by auto
}
thus "|A| \<le>o |B|" using ordLess_or_ordLeq[of "|B|" "|A|"]
by (auto simp: card_of_Well_order)
next
assume *: "|A| \<le>o |B|"
obtain f where "embed ( |A| ) ( |B| ) f"
using * unfolding ordLeq_def by auto
hence "inj_on f A \<and> f ` A \<le> B" using embed_inj_on[of "|A|" "|B|" f]
card_of_Well_order[of "A"] Field_card_of[of "A"] Field_card_of[of "B"]
embed_Field[of "|A|" "|B|" f] by auto
thus "\<exists>f. inj_on f A \<and> f ` A \<le> B" by auto
qed
lemma card_of_ordLeq2:
"A \<noteq> {} \<Longrightarrow> (\<exists>g. g ` B = A) = ( |A| \<le>o |B| )"
using card_of_ordLeq[of A B] inj_on_iff_surj[of A B] by auto
lemma card_of_ordLess:
"(\<not>(\<exists>f. inj_on f A \<and> f ` A \<le> B)) = ( |B| <o |A| )"
proof-
have "(\<not>(\<exists>f. inj_on f A \<and> f ` A \<le> B)) = (\<not> |A| \<le>o |B| )"
using card_of_ordLeq by blast
also have "\<dots> = ( |B| <o |A| )"
using card_of_Well_order[of A] card_of_Well_order[of B]
not_ordLeq_iff_ordLess by blast
finally show ?thesis .
qed
lemma card_of_ordLess2:
"B \<noteq> {} \<Longrightarrow> (\<not>(\<exists>f. f ` A = B)) = ( |A| <o |B| )"
using card_of_ordLess[of B A] inj_on_iff_surj[of B A] by auto
lemma card_of_ordIsoI:
assumes "bij_betw f A B"
shows "|A| =o |B|"
using assms unfolding card_of_ordIso[symmetric] by auto
lemma card_of_ordLeqI:
assumes "inj_on f A" and "\<And> a. a \<in> A \<Longrightarrow> f a \<in> B"
shows "|A| \<le>o |B|"
using assms unfolding card_of_ordLeq[symmetric] by auto
lemma card_of_unique:
"card_order_on A r \<Longrightarrow> r =o |A|"
by (simp only: card_order_on_ordIso card_of_card_order_on)
lemma card_of_mono1:
"A \<le> B \<Longrightarrow> |A| \<le>o |B|"
using inj_on_id[of A] card_of_ordLeq[of A B] by fastforce
lemma card_of_mono2:
assumes "r \<le>o r'"
shows "|Field r| \<le>o |Field r'|"
proof-
obtain f where
1: "well_order_on (Field r) r \<and> well_order_on (Field r) r \<and> embed r r' f"
using assms unfolding ordLeq_def
by (auto simp add: rel.well_order_on_Well_order)
hence "inj_on f (Field r) \<and> f ` (Field r) \<le> Field r'"
by (auto simp add: embed_inj_on embed_Field)
thus "|Field r| \<le>o |Field r'|" using card_of_ordLeq by blast
qed
lemma card_of_cong: "r =o r' \<Longrightarrow> |Field r| =o |Field r'|"
by (simp add: ordIso_iff_ordLeq card_of_mono2)
lemma card_of_Field_ordLess: "Well_order r \<Longrightarrow> |Field r| \<le>o r"
using card_of_least card_of_well_order_on rel.well_order_on_Well_order by blast
lemma card_of_Field_ordIso:
assumes "Card_order r"
shows "|Field r| =o r"
proof-
have "card_order_on (Field r) r"
using assms card_order_on_Card_order by blast
moreover have "card_order_on (Field r) |Field r|"
using card_of_card_order_on by blast
ultimately show ?thesis using card_order_on_ordIso by blast
qed
lemma Card_order_iff_ordIso_card_of:
"Card_order r = (r =o |Field r| )"
using ordIso_card_of_imp_Card_order card_of_Field_ordIso ordIso_symmetric by blast
lemma Card_order_iff_ordLeq_card_of:
"Card_order r = (r \<le>o |Field r| )"
proof-
have "Card_order r = (r =o |Field r| )"
unfolding Card_order_iff_ordIso_card_of by simp
also have "... = (r \<le>o |Field r| \<and> |Field r| \<le>o r)"
unfolding ordIso_iff_ordLeq by simp
also have "... = (r \<le>o |Field r| )"
using card_of_Field_ordLess
by (auto simp: card_of_Field_ordLess ordLeq_Well_order_simp)
finally show ?thesis .
qed
lemma Card_order_iff_Restr_underS:
assumes "Well_order r"
shows "Card_order r = (\<forall>a \<in> Field r. Restr r (rel.underS r a) <o |Field r| )"
using assms unfolding Card_order_iff_ordLeq_card_of
using ordLeq_iff_ordLess_Restr card_of_Well_order by blast
lemma card_of_underS:
assumes r: "Card_order r" and a: "a : Field r"
shows "|rel.underS r a| <o r"
proof-
let ?A = "rel.underS r a" let ?r' = "Restr r ?A"
have 1: "Well_order r"
using r unfolding card_order_on_def by simp
have "Well_order ?r'" using 1 Well_order_Restr by auto
moreover have "card_order_on (Field ?r') |Field ?r'|"
using card_of_card_order_on .
ultimately have "|Field ?r'| \<le>o ?r'"
unfolding card_order_on_def by simp
moreover have "Field ?r' = ?A"
using 1 wo_rel.underS_ofilter Field_Restr_ofilter
unfolding wo_rel_def by fastforce
ultimately have "|?A| \<le>o ?r'" by simp
also have "?r' <o |Field r|"
using 1 a r Card_order_iff_Restr_underS by blast
also have "|Field r| =o r"
using r ordIso_symmetric unfolding Card_order_iff_ordIso_card_of by auto
finally show ?thesis .
qed
lemma ordLess_Field:
assumes "r <o r'"
shows "|Field r| <o r'"
proof-
have "well_order_on (Field r) r" using assms unfolding ordLess_def
by (auto simp add: rel.well_order_on_Well_order)
hence "|Field r| \<le>o r" using card_of_least by blast
thus ?thesis using assms ordLeq_ordLess_trans by blast
qed
lemma internalize_card_of_ordLeq:
"( |A| \<le>o r) = (\<exists>B \<le> Field r. |A| =o |B| \<and> |B| \<le>o r)"
proof
assume "|A| \<le>o r"
then obtain p where 1: "Field p \<le> Field r \<and> |A| =o p \<and> p \<le>o r"
using internalize_ordLeq[of "|A|" r] by blast
hence "Card_order p" using card_of_Card_order Card_order_ordIso2 by blast
hence "|Field p| =o p" using card_of_Field_ordIso by blast
hence "|A| =o |Field p| \<and> |Field p| \<le>o r"
using 1 ordIso_equivalence ordIso_ordLeq_trans by blast
thus "\<exists>B \<le> Field r. |A| =o |B| \<and> |B| \<le>o r" using 1 by blast
next
assume "\<exists>B \<le> Field r. |A| =o |B| \<and> |B| \<le>o r"
thus "|A| \<le>o r" using ordIso_ordLeq_trans by blast
qed
lemma internalize_card_of_ordLeq2:
"( |A| \<le>o |C| ) = (\<exists>B \<le> C. |A| =o |B| \<and> |B| \<le>o |C| )"
using internalize_card_of_ordLeq[of "A" "|C|"] Field_card_of[of C] by auto
subsection {* Cardinals versus set operations on arbitrary sets *}
text{* Here we embark in a long journey of simple results showing
that the standard set-theoretic operations are well-behaved w.r.t. the notion of
cardinal -- essentially, this means that they preserve the ``cardinal identity"
@{text "=o"} and are monotonic w.r.t. @{text "\<le>o"}.
*}
lemma card_of_empty: "|{}| \<le>o |A|"
using card_of_ordLeq inj_on_id by blast
lemma card_of_empty1:
assumes "Well_order r \<or> Card_order r"
shows "|{}| \<le>o r"
proof-
have "Well_order r" using assms unfolding card_order_on_def by auto
hence "|Field r| <=o r"
using assms card_of_Field_ordLess by blast
moreover have "|{}| \<le>o |Field r|" by (simp add: card_of_empty)
ultimately show ?thesis using ordLeq_transitive by blast
qed
corollary Card_order_empty:
"Card_order r \<Longrightarrow> |{}| \<le>o r" by (simp add: card_of_empty1)
lemma card_of_empty2:
assumes LEQ: "|A| =o |{}|"
shows "A = {}"
using assms card_of_ordIso[of A] bij_betw_empty2 by blast
lemma card_of_empty3:
assumes LEQ: "|A| \<le>o |{}|"
shows "A = {}"
using assms
by (simp add: ordIso_iff_ordLeq card_of_empty1 card_of_empty2
ordLeq_Well_order_simp)
lemma card_of_empty_ordIso:
"|{}::'a set| =o |{}::'b set|"
using card_of_ordIso unfolding bij_betw_def inj_on_def by blast
lemma card_of_image:
"|f ` A| <=o |A|"
proof(cases "A = {}", simp add: card_of_empty)
assume "A ~= {}"
hence "f ` A ~= {}" by auto
thus "|f ` A| \<le>o |A|"
using card_of_ordLeq2[of "f ` A" A] by auto
qed
lemma surj_imp_ordLeq:
assumes "B <= f ` A"
shows "|B| <=o |A|"
proof-
have "|B| <=o |f ` A|" using assms card_of_mono1 by auto
thus ?thesis using card_of_image ordLeq_transitive by blast
qed
lemma card_of_ordLeqI2:
assumes "B \<subseteq> f ` A"
shows "|B| \<le>o |A|"
using assms by (metis surj_imp_ordLeq)
lemma card_of_singl_ordLeq:
assumes "A \<noteq> {}"
shows "|{b}| \<le>o |A|"
proof-
obtain a where *: "a \<in> A" using assms by auto
let ?h = "\<lambda> b'::'b. if b' = b then a else undefined"
have "inj_on ?h {b} \<and> ?h ` {b} \<le> A"
using * unfolding inj_on_def by auto
thus ?thesis using card_of_ordLeq by blast
qed
corollary Card_order_singl_ordLeq:
"\<lbrakk>Card_order r; Field r \<noteq> {}\<rbrakk> \<Longrightarrow> |{b}| \<le>o r"
using card_of_singl_ordLeq[of "Field r" b]
card_of_Field_ordIso[of r] ordLeq_ordIso_trans by blast
lemma card_of_Pow: "|A| <o |Pow A|"
using card_of_ordLess2[of "Pow A" A] Cantors_paradox[of A]
Pow_not_empty[of A] by auto
lemma infinite_Pow:
assumes "infinite A"
shows "infinite (Pow A)"
proof-
have "|A| \<le>o |Pow A|" by (metis card_of_Pow ordLess_imp_ordLeq)
thus ?thesis by (metis assms finite_Pow_iff)
qed
corollary Card_order_Pow:
"Card_order r \<Longrightarrow> r <o |Pow(Field r)|"
using card_of_Pow card_of_Field_ordIso ordIso_ordLess_trans ordIso_symmetric by blast
corollary card_of_set_type: "|UNIV::'a set| <o |UNIV::'a set set|"
using card_of_Pow[of "UNIV::'a set"] by simp
lemma card_of_Plus1: "|A| \<le>o |A <+> B|"
proof-
have "Inl ` A \<le> A <+> B" by auto
thus ?thesis using inj_Inl[of A] card_of_ordLeq by blast
qed
corollary Card_order_Plus1:
"Card_order r \<Longrightarrow> r \<le>o |(Field r) <+> B|"
using card_of_Plus1 card_of_Field_ordIso ordIso_ordLeq_trans ordIso_symmetric by blast
lemma card_of_Plus2: "|B| \<le>o |A <+> B|"
proof-
have "Inr ` B \<le> A <+> B" by auto
thus ?thesis using inj_Inr[of B] card_of_ordLeq by blast
qed
corollary Card_order_Plus2:
"Card_order r \<Longrightarrow> r \<le>o |A <+> (Field r)|"
using card_of_Plus2 card_of_Field_ordIso ordIso_ordLeq_trans ordIso_symmetric by blast
lemma card_of_Plus_empty1: "|A| =o |A <+> {}|"
proof-
have "bij_betw Inl A (A <+> {})" unfolding bij_betw_def inj_on_def by auto
thus ?thesis using card_of_ordIso by auto
qed
lemma card_of_Plus_empty2: "|A| =o |{} <+> A|"
proof-
have "bij_betw Inr A ({} <+> A)" unfolding bij_betw_def inj_on_def by auto
thus ?thesis using card_of_ordIso by auto
qed
lemma card_of_Plus_commute: "|A <+> B| =o |B <+> A|"
proof-
let ?f = "\<lambda>(c::'a + 'b). case c of Inl a \<Rightarrow> Inr a
| Inr b \<Rightarrow> Inl b"
have "bij_betw ?f (A <+> B) (B <+> A)"
unfolding bij_betw_def inj_on_def by force
thus ?thesis using card_of_ordIso by blast
qed
lemma card_of_Plus_assoc:
fixes A :: "'a set" and B :: "'b set" and C :: "'c set"
shows "|(A <+> B) <+> C| =o |A <+> B <+> C|"
proof -
def f \<equiv> "\<lambda>(k::('a + 'b) + 'c).
case k of Inl ab \<Rightarrow> (case ab of Inl a \<Rightarrow> Inl a
|Inr b \<Rightarrow> Inr (Inl b))
|Inr c \<Rightarrow> Inr (Inr c)"
have "A <+> B <+> C \<subseteq> f ` ((A <+> B) <+> C)"
proof
fix x assume x: "x \<in> A <+> B <+> C"
show "x \<in> f ` ((A <+> B) <+> C)"
proof(cases x)
case (Inl a)
hence "a \<in> A" "x = f (Inl (Inl a))"
using x unfolding f_def by auto
thus ?thesis by auto
next
case (Inr bc) note 1 = Inr show ?thesis
proof(cases bc)
case (Inl b)
hence "b \<in> B" "x = f (Inl (Inr b))"
using x 1 unfolding f_def by auto
thus ?thesis by auto
next
case (Inr c)
hence "c \<in> C" "x = f (Inr c)"
using x 1 unfolding f_def by auto
thus ?thesis by auto
qed
qed
qed
hence "bij_betw f ((A <+> B) <+> C) (A <+> B <+> C)"
unfolding bij_betw_def inj_on_def f_def by force
thus ?thesis using card_of_ordIso by blast
qed
lemma card_of_Plus_mono1:
assumes "|A| \<le>o |B|"
shows "|A <+> C| \<le>o |B <+> C|"
proof-
obtain f where 1: "inj_on f A \<and> f ` A \<le> B"
using assms card_of_ordLeq[of A] by fastforce
obtain g where g_def:
"g = (\<lambda>d. case d of Inl a \<Rightarrow> Inl(f a) | Inr (c::'c) \<Rightarrow> Inr c)" by blast
have "inj_on g (A <+> C) \<and> g ` (A <+> C) \<le> (B <+> C)"
proof-
{fix d1 and d2 assume "d1 \<in> A <+> C \<and> d2 \<in> A <+> C" and
"g d1 = g d2"
hence "d1 = d2" using 1 unfolding inj_on_def
by(case_tac d1, case_tac d2, auto simp add: g_def)
}
moreover
{fix d assume "d \<in> A <+> C"
hence "g d \<in> B <+> C" using 1
by(case_tac d, auto simp add: g_def)
}
ultimately show ?thesis unfolding inj_on_def by auto
qed
thus ?thesis using card_of_ordLeq by metis
qed
corollary ordLeq_Plus_mono1:
assumes "r \<le>o r'"
shows "|(Field r) <+> C| \<le>o |(Field r') <+> C|"
using assms card_of_mono2 card_of_Plus_mono1 by blast
lemma card_of_Plus_mono2:
assumes "|A| \<le>o |B|"
shows "|C <+> A| \<le>o |C <+> B|"
using assms card_of_Plus_mono1[of A B C]
card_of_Plus_commute[of C A] card_of_Plus_commute[of B C]
ordIso_ordLeq_trans[of "|C <+> A|"] ordLeq_ordIso_trans[of "|C <+> A|"]
by blast
corollary ordLeq_Plus_mono2:
assumes "r \<le>o r'"
shows "|A <+> (Field r)| \<le>o |A <+> (Field r')|"
using assms card_of_mono2 card_of_Plus_mono2 by blast
lemma card_of_Plus_mono:
assumes "|A| \<le>o |B|" and "|C| \<le>o |D|"
shows "|A <+> C| \<le>o |B <+> D|"
using assms card_of_Plus_mono1[of A B C] card_of_Plus_mono2[of C D B]
ordLeq_transitive[of "|A <+> C|"] by blast
corollary ordLeq_Plus_mono:
assumes "r \<le>o r'" and "p \<le>o p'"
shows "|(Field r) <+> (Field p)| \<le>o |(Field r') <+> (Field p')|"
using assms card_of_mono2[of r r'] card_of_mono2[of p p'] card_of_Plus_mono by blast
lemma card_of_Plus_cong1:
assumes "|A| =o |B|"
shows "|A <+> C| =o |B <+> C|"
using assms by (simp add: ordIso_iff_ordLeq card_of_Plus_mono1)
corollary ordIso_Plus_cong1:
assumes "r =o r'"
shows "|(Field r) <+> C| =o |(Field r') <+> C|"
using assms card_of_cong card_of_Plus_cong1 by blast
lemma card_of_Plus_cong2:
assumes "|A| =o |B|"
shows "|C <+> A| =o |C <+> B|"
using assms by (simp add: ordIso_iff_ordLeq card_of_Plus_mono2)
corollary ordIso_Plus_cong2:
assumes "r =o r'"
shows "|A <+> (Field r)| =o |A <+> (Field r')|"
using assms card_of_cong card_of_Plus_cong2 by blast
lemma card_of_Plus_cong:
assumes "|A| =o |B|" and "|C| =o |D|"
shows "|A <+> C| =o |B <+> D|"
using assms by (simp add: ordIso_iff_ordLeq card_of_Plus_mono)
corollary ordIso_Plus_cong:
assumes "r =o r'" and "p =o p'"
shows "|(Field r) <+> (Field p)| =o |(Field r') <+> (Field p')|"
using assms card_of_cong[of r r'] card_of_cong[of p p'] card_of_Plus_cong by blast
lemma card_of_Un1:
shows "|A| \<le>o |A \<union> B| "
using inj_on_id[of A] card_of_ordLeq[of A _] by fastforce
lemma card_of_diff:
shows "|A - B| \<le>o |A|"
using inj_on_id[of "A - B"] card_of_ordLeq[of "A - B" _] by fastforce
lemma card_of_Un_Plus_ordLeq:
"|A \<union> B| \<le>o |A <+> B|"
proof-
let ?f = "\<lambda> c. if c \<in> A then Inl c else Inr c"
have "inj_on ?f (A \<union> B) \<and> ?f ` (A \<union> B) \<le> A <+> B"
unfolding inj_on_def by auto
thus ?thesis using card_of_ordLeq by blast
qed
lemma card_of_Times1:
assumes "A \<noteq> {}"
shows "|B| \<le>o |B \<times> A|"
proof(cases "B = {}", simp add: card_of_empty)
assume *: "B \<noteq> {}"
have "fst `(B \<times> A) = B" unfolding image_def using assms by auto
thus ?thesis using inj_on_iff_surj[of B "B \<times> A"]
card_of_ordLeq[of B "B \<times> A"] * by blast
qed
corollary Card_order_Times1:
"\<lbrakk>Card_order r; B \<noteq> {}\<rbrakk> \<Longrightarrow> r \<le>o |(Field r) \<times> B|"
using card_of_Times1[of B] card_of_Field_ordIso
ordIso_ordLeq_trans ordIso_symmetric by blast
lemma card_of_Times_commute: "|A \<times> B| =o |B \<times> A|"
proof-
let ?f = "\<lambda>(a::'a,b::'b). (b,a)"
have "bij_betw ?f (A \<times> B) (B \<times> A)"
unfolding bij_betw_def inj_on_def by auto
thus ?thesis using card_of_ordIso by blast
qed
lemma card_of_Times2:
assumes "A \<noteq> {}" shows "|B| \<le>o |A \<times> B|"
using assms card_of_Times1[of A B] card_of_Times_commute[of B A]
ordLeq_ordIso_trans by blast
corollary Card_order_Times2:
"\<lbrakk>Card_order r; A \<noteq> {}\<rbrakk> \<Longrightarrow> r \<le>o |A \<times> (Field r)|"
using card_of_Times2[of A] card_of_Field_ordIso
ordIso_ordLeq_trans ordIso_symmetric by blast
lemma card_of_Times3: "|A| \<le>o |A \<times> A|"
using card_of_Times1[of A]
by(cases "A = {}", simp add: card_of_empty, blast)
lemma card_of_Plus_Times_bool: "|A <+> A| =o |A \<times> (UNIV::bool set)|"
proof-
let ?f = "\<lambda>c::'a + 'a. case c of Inl a \<Rightarrow> (a,True)
|Inr a \<Rightarrow> (a,False)"
have "bij_betw ?f (A <+> A) (A \<times> (UNIV::bool set))"
proof-
{fix c1 and c2 assume "?f c1 = ?f c2"
hence "c1 = c2"
by(case_tac "c1", case_tac "c2", auto, case_tac "c2", auto)
}
moreover
{fix c assume "c \<in> A <+> A"
hence "?f c \<in> A \<times> (UNIV::bool set)"
by(case_tac c, auto)
}
moreover
{fix a bl assume *: "(a,bl) \<in> A \<times> (UNIV::bool set)"
have "(a,bl) \<in> ?f ` ( A <+> A)"
proof(cases bl)
assume bl hence "?f(Inl a) = (a,bl)" by auto
thus ?thesis using * by force
next
assume "\<not> bl" hence "?f(Inr a) = (a,bl)" by auto
thus ?thesis using * by force
qed
}
ultimately show ?thesis unfolding bij_betw_def inj_on_def by auto
qed
thus ?thesis using card_of_ordIso by blast
qed
lemma card_of_Times_mono1:
assumes "|A| \<le>o |B|"
shows "|A \<times> C| \<le>o |B \<times> C|"
proof-
obtain f where 1: "inj_on f A \<and> f ` A \<le> B"
using assms card_of_ordLeq[of A] by fastforce
obtain g where g_def:
"g = (\<lambda>(a,c::'c). (f a,c))" by blast
have "inj_on g (A \<times> C) \<and> g ` (A \<times> C) \<le> (B \<times> C)"
using 1 unfolding inj_on_def using g_def by auto
thus ?thesis using card_of_ordLeq by metis
qed
corollary ordLeq_Times_mono1:
assumes "r \<le>o r'"
shows "|(Field r) \<times> C| \<le>o |(Field r') \<times> C|"
using assms card_of_mono2 card_of_Times_mono1 by blast
lemma card_of_Times_mono2:
assumes "|A| \<le>o |B|"
shows "|C \<times> A| \<le>o |C \<times> B|"
using assms card_of_Times_mono1[of A B C]
card_of_Times_commute[of C A] card_of_Times_commute[of B C]
ordIso_ordLeq_trans[of "|C \<times> A|"] ordLeq_ordIso_trans[of "|C \<times> A|"]
by blast
corollary ordLeq_Times_mono2:
assumes "r \<le>o r'"
shows "|A \<times> (Field r)| \<le>o |A \<times> (Field r')|"
using assms card_of_mono2 card_of_Times_mono2 by blast
lemma card_of_Times_cong1:
assumes "|A| =o |B|"
shows "|A \<times> C| =o |B \<times> C|"
using assms by (simp add: ordIso_iff_ordLeq card_of_Times_mono1)
lemma card_of_Times_cong2:
assumes "|A| =o |B|"
shows "|C \<times> A| =o |C \<times> B|"
using assms by (simp add: ordIso_iff_ordLeq card_of_Times_mono2)
corollary ordIso_Times_cong2:
assumes "r =o r'"
shows "|A \<times> (Field r)| =o |A \<times> (Field r')|"
using assms card_of_cong card_of_Times_cong2 by blast
lemma card_of_Sigma_mono1:
assumes "\<forall>i \<in> I. |A i| \<le>o |B i|"
shows "|SIGMA i : I. A i| \<le>o |SIGMA i : I. B i|"
proof-
have "\<forall>i. i \<in> I \<longrightarrow> (\<exists>f. inj_on f (A i) \<and> f ` (A i) \<le> B i)"
using assms by (auto simp add: card_of_ordLeq)
with choice[of "\<lambda> i f. i \<in> I \<longrightarrow> inj_on f (A i) \<and> f ` (A i) \<le> B i"]
obtain F where 1: "\<forall>i \<in> I. inj_on (F i) (A i) \<and> (F i) ` (A i) \<le> B i" by metis
obtain g where g_def: "g = (\<lambda>(i,a::'b). (i,F i a))" by blast
have "inj_on g (Sigma I A) \<and> g ` (Sigma I A) \<le> (Sigma I B)"
using 1 unfolding inj_on_def using g_def by force
thus ?thesis using card_of_ordLeq by metis
qed
corollary card_of_Sigma_Times:
"\<forall>i \<in> I. |A i| \<le>o |B| \<Longrightarrow> |SIGMA i : I. A i| \<le>o |I \<times> B|"
using card_of_Sigma_mono1[of I A "\<lambda>i. B"] .
lemma card_of_UNION_Sigma:
"|\<Union>i \<in> I. A i| \<le>o |SIGMA i : I. A i|"
using Ex_inj_on_UNION_Sigma[of I A] card_of_ordLeq by metis
lemma card_of_bool:
assumes "a1 \<noteq> a2"
shows "|UNIV::bool set| =o |{a1,a2}|"
proof-
let ?f = "\<lambda> bl. case bl of True \<Rightarrow> a1 | False \<Rightarrow> a2"
have "bij_betw ?f UNIV {a1,a2}"
proof-
{fix bl1 and bl2 assume "?f bl1 = ?f bl2"
hence "bl1 = bl2" using assms by (case_tac bl1, case_tac bl2, auto)
}
moreover
{fix bl have "?f bl \<in> {a1,a2}" by (case_tac bl, auto)
}
moreover
{fix a assume *: "a \<in> {a1,a2}"
have "a \<in> ?f ` UNIV"
proof(cases "a = a1")
assume "a = a1"
hence "?f True = a" by auto thus ?thesis by blast
next
assume "a \<noteq> a1" hence "a = a2" using * by auto
hence "?f False = a" by auto thus ?thesis by blast
qed
}
ultimately show ?thesis unfolding bij_betw_def inj_on_def
by (metis image_subsetI order_eq_iff subsetI)
qed
thus ?thesis using card_of_ordIso by blast
qed
lemma card_of_Plus_Times_aux:
assumes A2: "a1 \<noteq> a2 \<and> {a1,a2} \<le> A" and
LEQ: "|A| \<le>o |B|"
shows "|A <+> B| \<le>o |A \<times> B|"
proof-
have 1: "|UNIV::bool set| \<le>o |A|"
using A2 card_of_mono1[of "{a1,a2}"] card_of_bool[of a1 a2]
ordIso_ordLeq_trans[of "|UNIV::bool set|"] by metis
(* *)
have "|A <+> B| \<le>o |B <+> B|"
using LEQ card_of_Plus_mono1 by blast
moreover have "|B <+> B| =o |B \<times> (UNIV::bool set)|"
using card_of_Plus_Times_bool by blast
moreover have "|B \<times> (UNIV::bool set)| \<le>o |B \<times> A|"
using 1 by (simp add: card_of_Times_mono2)
moreover have " |B \<times> A| =o |A \<times> B|"
using card_of_Times_commute by blast
ultimately show "|A <+> B| \<le>o |A \<times> B|"
using ordLeq_ordIso_trans[of "|A <+> B|" "|B <+> B|" "|B \<times> (UNIV::bool set)|"]
ordLeq_transitive[of "|A <+> B|" "|B \<times> (UNIV::bool set)|" "|B \<times> A|"]
ordLeq_ordIso_trans[of "|A <+> B|" "|B \<times> A|" "|A \<times> B|"]
by blast
qed
lemma card_of_Plus_Times:
assumes A2: "a1 \<noteq> a2 \<and> {a1,a2} \<le> A" and
B2: "b1 \<noteq> b2 \<and> {b1,b2} \<le> B"
shows "|A <+> B| \<le>o |A \<times> B|"
proof-
{assume "|A| \<le>o |B|"
hence ?thesis using assms by (auto simp add: card_of_Plus_Times_aux)
}
moreover
{assume "|B| \<le>o |A|"
hence "|B <+> A| \<le>o |B \<times> A|"
using assms by (auto simp add: card_of_Plus_Times_aux)
hence ?thesis
using card_of_Plus_commute card_of_Times_commute
ordIso_ordLeq_trans ordLeq_ordIso_trans by metis
}
ultimately show ?thesis
using card_of_Well_order[of A] card_of_Well_order[of B]
ordLeq_total[of "|A|"] by metis
qed
lemma card_of_ordLeq_finite:
assumes "|A| \<le>o |B|" and "finite B"
shows "finite A"
using assms unfolding ordLeq_def
using embed_inj_on[of "|A|" "|B|"] embed_Field[of "|A|" "|B|"]
Field_card_of[of "A"] Field_card_of[of "B"] inj_on_finite[of _ "A" "B"] by fastforce
lemma card_of_ordLeq_infinite:
assumes "|A| \<le>o |B|" and "infinite A"
shows "infinite B"
using assms card_of_ordLeq_finite by auto
lemma card_of_ordIso_finite:
assumes "|A| =o |B|"
shows "finite A = finite B"
using assms unfolding ordIso_def iso_def[abs_def]
by (auto simp: bij_betw_finite Field_card_of)
lemma card_of_ordIso_finite_Field:
assumes "Card_order r" and "r =o |A|"
shows "finite(Field r) = finite A"
using assms card_of_Field_ordIso card_of_ordIso_finite ordIso_equivalence by blast
subsection {* Cardinals versus set operations involving infinite sets *}
text{* Here we show that, for infinite sets, most set-theoretic constructions
do not increase the cardinality. The cornerstone for this is
theorem @{text "Card_order_Times_same_infinite"}, which states that self-product
does not increase cardinality -- the proof of this fact adapts a standard
set-theoretic argument, as presented, e.g., in the proof of theorem 1.5.11
at page 47 in \cite{card-book}. Then everything else follows fairly easily. *}
lemma infinite_iff_card_of_nat:
"infinite A = ( |UNIV::nat set| \<le>o |A| )"
by (auto simp add: infinite_iff_countable_subset card_of_ordLeq)
lemma finite_iff_cardOf_nat:
"finite A = ( |A| <o |UNIV :: nat set| )"
using infinite_iff_card_of_nat[of A]
not_ordLeq_iff_ordLess[of "|A|" "|UNIV :: nat set|"]
by (fastforce simp: card_of_Well_order)
lemma finite_ordLess_infinite2:
assumes "finite A" and "infinite B"
shows "|A| <o |B|"
using assms
finite_ordLess_infinite[of "|A|" "|B|"]
card_of_Well_order[of A] card_of_Well_order[of B]
Field_card_of[of A] Field_card_of[of B] by auto
text{* The next two results correspond to the ZF fact that all infinite cardinals are
limit ordinals: *}
lemma Card_order_infinite_not_under:
assumes CARD: "Card_order r" and INF: "infinite (Field r)"
shows "\<not> (\<exists>a. Field r = rel.under r a)"
proof(auto)
have 0: "Well_order r \<and> wo_rel r \<and> Refl r"
using CARD unfolding wo_rel_def card_order_on_def order_on_defs by auto
fix a assume *: "Field r = rel.under r a"
show False
proof(cases "a \<in> Field r")
assume Case1: "a \<notin> Field r"
hence "rel.under r a = {}" unfolding Field_def rel.under_def by auto
thus False using INF * by auto
next
let ?r' = "Restr r (rel.underS r a)"
assume Case2: "a \<in> Field r"
hence 1: "rel.under r a = rel.underS r a \<union> {a} \<and> a \<notin> rel.underS r a"
using 0 rel.Refl_under_underS rel.underS_notIn by fastforce
have 2: "wo_rel.ofilter r (rel.underS r a) \<and> rel.underS r a < Field r"
using 0 wo_rel.underS_ofilter * 1 Case2 by auto
hence "?r' <o r" using 0 using ofilter_ordLess by blast
moreover
have "Field ?r' = rel.underS r a \<and> Well_order ?r'"
using 2 0 Field_Restr_ofilter[of r] Well_order_Restr[of r] by blast
ultimately have "|rel.underS r a| <o r" using ordLess_Field[of ?r'] by auto
moreover have "|rel.under r a| =o r" using * CARD card_of_Field_ordIso[of r] by auto
ultimately have "|rel.underS r a| <o |rel.under r a|"
using ordIso_symmetric ordLess_ordIso_trans by blast
moreover
{have "\<exists>f. bij_betw f (rel.under r a) (rel.underS r a)"
using infinite_imp_bij_betw[of "Field r" a] INF * 1 by auto
hence "|rel.under r a| =o |rel.underS r a|" using card_of_ordIso by blast
}
ultimately show False using not_ordLess_ordIso ordIso_symmetric by blast
qed
qed
lemma infinite_Card_order_limit:
assumes r: "Card_order r" and "infinite (Field r)"
and a: "a : Field r"
shows "EX b : Field r. a \<noteq> b \<and> (a,b) : r"
proof-
have "Field r \<noteq> rel.under r a"
using assms Card_order_infinite_not_under by blast
moreover have "rel.under r a \<le> Field r"
using rel.under_Field .
ultimately have "rel.under r a < Field r" by blast
then obtain b where 1: "b : Field r \<and> ~ (b,a) : r"
unfolding rel.under_def by blast
moreover have ba: "b \<noteq> a"
using 1 r unfolding card_order_on_def well_order_on_def
linear_order_on_def partial_order_on_def preorder_on_def refl_on_def by auto
ultimately have "(a,b) : r"
using a r unfolding card_order_on_def well_order_on_def linear_order_on_def
total_on_def by blast
thus ?thesis using 1 ba by auto
qed
theorem Card_order_Times_same_infinite:
assumes CO: "Card_order r" and INF: "infinite(Field r)"
shows "|Field r \<times> Field r| \<le>o r"
proof-
obtain phi where phi_def:
"phi = (\<lambda>r::'a rel. Card_order r \<and> infinite(Field r) \<and>
\<not> |Field r \<times> Field r| \<le>o r )" by blast
have temp1: "\<forall>r. phi r \<longrightarrow> Well_order r"
unfolding phi_def card_order_on_def by auto
have Ft: "\<not>(\<exists>r. phi r)"
proof
assume "\<exists>r. phi r"
hence "{r. phi r} \<noteq> {} \<and> {r. phi r} \<le> {r. Well_order r}"
using temp1 by auto
then obtain r where 1: "phi r" and 2: "\<forall>r'. phi r' \<longrightarrow> r \<le>o r'" and
3: "Card_order r \<and> Well_order r"
using exists_minim_Well_order[of "{r. phi r}"] temp1 phi_def by blast
let ?A = "Field r" let ?r' = "bsqr r"
have 4: "Well_order ?r' \<and> Field ?r' = ?A \<times> ?A \<and> |?A| =o r"
using 3 bsqr_Well_order Field_bsqr card_of_Field_ordIso by blast
have 5: "Card_order |?A \<times> ?A| \<and> Well_order |?A \<times> ?A|"
using card_of_Card_order card_of_Well_order by blast
(* *)
have "r <o |?A \<times> ?A|"
using 1 3 5 ordLess_or_ordLeq unfolding phi_def by blast
moreover have "|?A \<times> ?A| \<le>o ?r'"
using card_of_least[of "?A \<times> ?A"] 4 by auto
ultimately have "r <o ?r'" using ordLess_ordLeq_trans by auto
then obtain f where 6: "embed r ?r' f" and 7: "\<not> bij_betw f ?A (?A \<times> ?A)"
unfolding ordLess_def embedS_def[abs_def]
by (auto simp add: Field_bsqr)
let ?B = "f ` ?A"
have "|?A| =o |?B|"
using 3 6 embed_inj_on inj_on_imp_bij_betw card_of_ordIso by blast
hence 8: "r =o |?B|" using 4 ordIso_transitive ordIso_symmetric by blast
(* *)
have "wo_rel.ofilter ?r' ?B"
using 6 embed_Field_ofilter 3 4 by blast
hence "wo_rel.ofilter ?r' ?B \<and> ?B \<noteq> ?A \<times> ?A \<and> ?B \<noteq> Field ?r'"
using 7 unfolding bij_betw_def using 6 3 embed_inj_on 4 by auto
hence temp2: "wo_rel.ofilter ?r' ?B \<and> ?B < ?A \<times> ?A"
using 4 wo_rel_def[of ?r'] wo_rel.ofilter_def[of ?r' ?B] by blast
have "\<not> (\<exists>a. Field r = rel.under r a)"
using 1 unfolding phi_def using Card_order_infinite_not_under[of r] by auto
then obtain A1 where temp3: "wo_rel.ofilter r A1 \<and> A1 < ?A" and 9: "?B \<le> A1 \<times> A1"
using temp2 3 bsqr_ofilter[of r ?B] by blast
hence "|?B| \<le>o |A1 \<times> A1|" using card_of_mono1 by blast
hence 10: "r \<le>o |A1 \<times> A1|" using 8 ordIso_ordLeq_trans by blast
let ?r1 = "Restr r A1"
have "?r1 <o r" using temp3 ofilter_ordLess 3 by blast
moreover
{have "well_order_on A1 ?r1" using 3 temp3 well_order_on_Restr by blast
hence "|A1| \<le>o ?r1" using 3 Well_order_Restr card_of_least by blast
}
ultimately have 11: "|A1| <o r" using ordLeq_ordLess_trans by blast
(* *)
have "infinite (Field r)" using 1 unfolding phi_def by simp
hence "infinite ?B" using 8 3 card_of_ordIso_finite_Field[of r ?B] by blast
hence "infinite A1" using 9 infinite_super finite_cartesian_product by blast
moreover have temp4: "Field |A1| = A1 \<and> Well_order |A1| \<and> Card_order |A1|"
using card_of_Card_order[of A1] card_of_Well_order[of A1]
by (simp add: Field_card_of)
moreover have "\<not> r \<le>o | A1 |"
using temp4 11 3 using not_ordLeq_iff_ordLess by blast
ultimately have "infinite(Field |A1| ) \<and> Card_order |A1| \<and> \<not> r \<le>o | A1 |"
by (simp add: card_of_card_order_on)
hence "|Field |A1| \<times> Field |A1| | \<le>o |A1|"
using 2 unfolding phi_def by blast
hence "|A1 \<times> A1 | \<le>o |A1|" using temp4 by auto
hence "r \<le>o |A1|" using 10 ordLeq_transitive by blast
thus False using 11 not_ordLess_ordLeq by auto
qed
thus ?thesis using assms unfolding phi_def by blast
qed
corollary card_of_Times_same_infinite:
assumes "infinite A"
shows "|A \<times> A| =o |A|"
proof-
let ?r = "|A|"
have "Field ?r = A \<and> Card_order ?r"
using Field_card_of card_of_Card_order[of A] by fastforce
hence "|A \<times> A| \<le>o |A|"
using Card_order_Times_same_infinite[of ?r] assms by auto
thus ?thesis using card_of_Times3 ordIso_iff_ordLeq by blast
qed
lemma card_of_Times_infinite:
assumes INF: "infinite A" and NE: "B \<noteq> {}" and LEQ: "|B| \<le>o |A|"
shows "|A \<times> B| =o |A| \<and> |B \<times> A| =o |A|"
proof-
have "|A| \<le>o |A \<times> B| \<and> |A| \<le>o |B \<times> A|"
using assms by (simp add: card_of_Times1 card_of_Times2)
moreover
{have "|A \<times> B| \<le>o |A \<times> A| \<and> |B \<times> A| \<le>o |A \<times> A|"
using LEQ card_of_Times_mono1 card_of_Times_mono2 by blast
moreover have "|A \<times> A| =o |A|" using INF card_of_Times_same_infinite by blast
ultimately have "|A \<times> B| \<le>o |A| \<and> |B \<times> A| \<le>o |A|"
using ordLeq_ordIso_trans[of "|A \<times> B|"] ordLeq_ordIso_trans[of "|B \<times> A|"] by auto
}
ultimately show ?thesis by (simp add: ordIso_iff_ordLeq)
qed
corollary card_of_Times_infinite_simps:
"\<lbrakk>infinite A; B \<noteq> {}; |B| \<le>o |A|\<rbrakk> \<Longrightarrow> |A \<times> B| =o |A|"
"\<lbrakk>infinite A; B \<noteq> {}; |B| \<le>o |A|\<rbrakk> \<Longrightarrow> |A| =o |A \<times> B|"
"\<lbrakk>infinite A; B \<noteq> {}; |B| \<le>o |A|\<rbrakk> \<Longrightarrow> |B \<times> A| =o |A|"
"\<lbrakk>infinite A; B \<noteq> {}; |B| \<le>o |A|\<rbrakk> \<Longrightarrow> |A| =o |B \<times> A|"
by (auto simp add: card_of_Times_infinite ordIso_symmetric)
corollary Card_order_Times_infinite:
assumes INF: "infinite(Field r)" and CARD: "Card_order r" and
NE: "Field p \<noteq> {}" and LEQ: "p \<le>o r"
shows "| (Field r) \<times> (Field p) | =o r \<and> | (Field p) \<times> (Field r) | =o r"
proof-
have "|Field r \<times> Field p| =o |Field r| \<and> |Field p \<times> Field r| =o |Field r|"
using assms by (simp add: card_of_Times_infinite card_of_mono2)
thus ?thesis
using assms card_of_Field_ordIso[of r]
ordIso_transitive[of "|Field r \<times> Field p|"]
ordIso_transitive[of _ "|Field r|"] by blast
qed
lemma card_of_Sigma_ordLeq_infinite:
assumes INF: "infinite B" and
LEQ_I: "|I| \<le>o |B|" and LEQ: "\<forall>i \<in> I. |A i| \<le>o |B|"
shows "|SIGMA i : I. A i| \<le>o |B|"
proof(cases "I = {}", simp add: card_of_empty)
assume *: "I \<noteq> {}"
have "|SIGMA i : I. A i| \<le>o |I \<times> B|"
using LEQ card_of_Sigma_Times by blast
moreover have "|I \<times> B| =o |B|"
using INF * LEQ_I by (auto simp add: card_of_Times_infinite)
ultimately show ?thesis using ordLeq_ordIso_trans by blast
qed
lemma card_of_Sigma_ordLeq_infinite_Field:
assumes INF: "infinite (Field r)" and r: "Card_order r" and
LEQ_I: "|I| \<le>o r" and LEQ: "\<forall>i \<in> I. |A i| \<le>o r"
shows "|SIGMA i : I. A i| \<le>o r"
proof-
let ?B = "Field r"
have 1: "r =o |?B| \<and> |?B| =o r" using r card_of_Field_ordIso
ordIso_symmetric by blast
hence "|I| \<le>o |?B|" "\<forall>i \<in> I. |A i| \<le>o |?B|"
using LEQ_I LEQ ordLeq_ordIso_trans by blast+
hence "|SIGMA i : I. A i| \<le>o |?B|" using INF LEQ
card_of_Sigma_ordLeq_infinite by blast
thus ?thesis using 1 ordLeq_ordIso_trans by blast
qed
lemma card_of_Times_ordLeq_infinite_Field:
"\<lbrakk>infinite (Field r); |A| \<le>o r; |B| \<le>o r; Card_order r\<rbrakk>
\<Longrightarrow> |A <*> B| \<le>o r"
by(simp add: card_of_Sigma_ordLeq_infinite_Field)
lemma card_of_UNION_ordLeq_infinite:
assumes INF: "infinite B" and
LEQ_I: "|I| \<le>o |B|" and LEQ: "\<forall>i \<in> I. |A i| \<le>o |B|"
shows "|\<Union> i \<in> I. A i| \<le>o |B|"
proof(cases "I = {}", simp add: card_of_empty)
assume *: "I \<noteq> {}"
have "|\<Union> i \<in> I. A i| \<le>o |SIGMA i : I. A i|"
using card_of_UNION_Sigma by blast
moreover have "|SIGMA i : I. A i| \<le>o |B|"
using assms card_of_Sigma_ordLeq_infinite by blast
ultimately show ?thesis using ordLeq_transitive by blast
qed
corollary card_of_UNION_ordLeq_infinite_Field:
assumes INF: "infinite (Field r)" and r: "Card_order r" and
LEQ_I: "|I| \<le>o r" and LEQ: "\<forall>i \<in> I. |A i| \<le>o r"
shows "|\<Union> i \<in> I. A i| \<le>o r"
proof-
let ?B = "Field r"
have 1: "r =o |?B| \<and> |?B| =o r" using r card_of_Field_ordIso
ordIso_symmetric by blast
hence "|I| \<le>o |?B|" "\<forall>i \<in> I. |A i| \<le>o |?B|"
using LEQ_I LEQ ordLeq_ordIso_trans by blast+
hence "|\<Union> i \<in> I. A i| \<le>o |?B|" using INF LEQ
card_of_UNION_ordLeq_infinite by blast
thus ?thesis using 1 ordLeq_ordIso_trans by blast
qed
lemma card_of_Plus_infinite1:
assumes INF: "infinite A" and LEQ: "|B| \<le>o |A|"
shows "|A <+> B| =o |A|"
proof(cases "B = {}", simp add: card_of_Plus_empty1 card_of_Plus_empty2 ordIso_symmetric)
let ?Inl = "Inl::'a \<Rightarrow> 'a + 'b" let ?Inr = "Inr::'b \<Rightarrow> 'a + 'b"
assume *: "B \<noteq> {}"
then obtain b1 where 1: "b1 \<in> B" by blast
show ?thesis
proof(cases "B = {b1}")
assume Case1: "B = {b1}"
have 2: "bij_betw ?Inl A ((?Inl ` A))"
unfolding bij_betw_def inj_on_def by auto
hence 3: "infinite (?Inl ` A)"
using INF bij_betw_finite[of ?Inl A] by blast
let ?A' = "?Inl ` A \<union> {?Inr b1}"
obtain g where "bij_betw g (?Inl ` A) ?A'"
using 3 infinite_imp_bij_betw2[of "?Inl ` A"] by auto
moreover have "?A' = A <+> B" using Case1 by blast
ultimately have "bij_betw g (?Inl ` A) (A <+> B)" by simp
hence "bij_betw (g o ?Inl) A (A <+> B)"
using 2 by (auto simp add: bij_betw_trans)
thus ?thesis using card_of_ordIso ordIso_symmetric by blast
next
assume Case2: "B \<noteq> {b1}"
with * 1 obtain b2 where 3: "b1 \<noteq> b2 \<and> {b1,b2} \<le> B" by fastforce
obtain f where "inj_on f B \<and> f ` B \<le> A"
using LEQ card_of_ordLeq[of B] by fastforce
with 3 have "f b1 \<noteq> f b2 \<and> {f b1, f b2} \<le> A"
unfolding inj_on_def by auto
with 3 have "|A <+> B| \<le>o |A \<times> B|"
by (auto simp add: card_of_Plus_Times)
moreover have "|A \<times> B| =o |A|"
using assms * by (simp add: card_of_Times_infinite_simps)
ultimately have "|A <+> B| \<le>o |A|" using ordLeq_ordIso_trans by metis
thus ?thesis using card_of_Plus1 ordIso_iff_ordLeq by blast
qed
qed
lemma card_of_Plus_infinite2:
assumes INF: "infinite A" and LEQ: "|B| \<le>o |A|"
shows "|B <+> A| =o |A|"
using assms card_of_Plus_commute card_of_Plus_infinite1
ordIso_equivalence by blast
lemma card_of_Plus_infinite:
assumes INF: "infinite A" and LEQ: "|B| \<le>o |A|"
shows "|A <+> B| =o |A| \<and> |B <+> A| =o |A|"
using assms by (auto simp: card_of_Plus_infinite1 card_of_Plus_infinite2)
corollary Card_order_Plus_infinite:
assumes INF: "infinite(Field r)" and CARD: "Card_order r" and
LEQ: "p \<le>o r"
shows "| (Field r) <+> (Field p) | =o r \<and> | (Field p) <+> (Field r) | =o r"
proof-
have "| Field r <+> Field p | =o | Field r | \<and>
| Field p <+> Field r | =o | Field r |"
using assms by (simp add: card_of_Plus_infinite card_of_mono2)
thus ?thesis
using assms card_of_Field_ordIso[of r]
ordIso_transitive[of "|Field r <+> Field p|"]
ordIso_transitive[of _ "|Field r|"] by blast
qed
lemma card_of_Un_infinite:
assumes INF: "infinite A" and LEQ: "|B| \<le>o |A|"
shows "|A \<union> B| =o |A| \<and> |B \<union> A| =o |A|"
proof-
have "|A \<union> B| \<le>o |A <+> B|" by (rule card_of_Un_Plus_ordLeq)
moreover have "|A <+> B| =o |A|"
using assms by (metis card_of_Plus_infinite)
ultimately have "|A \<union> B| \<le>o |A|" using ordLeq_ordIso_trans by blast
hence "|A \<union> B| =o |A|" using card_of_Un1 ordIso_iff_ordLeq by blast
thus ?thesis using Un_commute[of B A] by auto
qed
lemma card_of_Un_diff_infinite:
assumes INF: "infinite A" and LESS: "|B| <o |A|"
shows "|A - B| =o |A|"
proof-
obtain C where C_def: "C = A - B" by blast
have "|A \<union> B| =o |A|"
using assms ordLeq_iff_ordLess_or_ordIso card_of_Un_infinite by blast
moreover have "C \<union> B = A \<union> B" unfolding C_def by auto
ultimately have 1: "|C \<union> B| =o |A|" by auto
(* *)
{assume *: "|C| \<le>o |B|"
moreover
{assume **: "finite B"
hence "finite C"
using card_of_ordLeq_finite * by blast
hence False using ** INF card_of_ordIso_finite 1 by blast
}
hence "infinite B" by auto
ultimately have False
using card_of_Un_infinite 1 ordIso_equivalence(1,3) LESS not_ordLess_ordIso by metis
}
hence 2: "|B| \<le>o |C|" using card_of_Well_order ordLeq_total by blast
{assume *: "finite C"
hence "finite B" using card_of_ordLeq_finite 2 by blast
hence False using * INF card_of_ordIso_finite 1 by blast
}
hence "infinite C" by auto
hence "|C| =o |A|"
using card_of_Un_infinite 1 2 ordIso_equivalence(1,3) by metis
thus ?thesis unfolding C_def .
qed
lemma card_of_Plus_ordLess_infinite:
assumes INF: "infinite C" and
LESS1: "|A| <o |C|" and LESS2: "|B| <o |C|"
shows "|A <+> B| <o |C|"
proof(cases "A = {} \<or> B = {}")
assume Case1: "A = {} \<or> B = {}"
hence "|A| =o |A <+> B| \<or> |B| =o |A <+> B|"
using card_of_Plus_empty1 card_of_Plus_empty2 by blast
hence "|A <+> B| =o |A| \<or> |A <+> B| =o |B|"
using ordIso_symmetric[of "|A|"] ordIso_symmetric[of "|B|"] by blast
thus ?thesis using LESS1 LESS2
ordIso_ordLess_trans[of "|A <+> B|" "|A|"]
ordIso_ordLess_trans[of "|A <+> B|" "|B|"] by blast
next
assume Case2: "\<not>(A = {} \<or> B = {})"
{assume *: "|C| \<le>o |A <+> B|"
hence "infinite (A <+> B)" using INF card_of_ordLeq_finite by blast
hence 1: "infinite A \<or> infinite B" using finite_Plus by blast
{assume Case21: "|A| \<le>o |B|"
hence "infinite B" using 1 card_of_ordLeq_finite by blast
hence "|A <+> B| =o |B|" using Case2 Case21
by (auto simp add: card_of_Plus_infinite)
hence False using LESS2 not_ordLess_ordLeq * ordLeq_ordIso_trans by blast
}
moreover
{assume Case22: "|B| \<le>o |A|"
hence "infinite A" using 1 card_of_ordLeq_finite by blast
hence "|A <+> B| =o |A|" using Case2 Case22
by (auto simp add: card_of_Plus_infinite)
hence False using LESS1 not_ordLess_ordLeq * ordLeq_ordIso_trans by blast
}
ultimately have False using ordLeq_total card_of_Well_order[of A]
card_of_Well_order[of B] by blast
}
thus ?thesis using ordLess_or_ordLeq[of "|A <+> B|" "|C|"]
card_of_Well_order[of "A <+> B"] card_of_Well_order[of "C"] by auto
qed
lemma card_of_Plus_ordLess_infinite_Field:
assumes INF: "infinite (Field r)" and r: "Card_order r" and
LESS1: "|A| <o r" and LESS2: "|B| <o r"
shows "|A <+> B| <o r"
proof-
let ?C = "Field r"
have 1: "r =o |?C| \<and> |?C| =o r" using r card_of_Field_ordIso
ordIso_symmetric by blast
hence "|A| <o |?C|" "|B| <o |?C|"
using LESS1 LESS2 ordLess_ordIso_trans by blast+
hence "|A <+> B| <o |?C|" using INF
card_of_Plus_ordLess_infinite by blast
thus ?thesis using 1 ordLess_ordIso_trans by blast
qed
lemma infinite_card_of_insert:
assumes "infinite A"
shows "|insert a A| =o |A|"
proof-
have iA: "insert a A = A \<union> {a}" by simp
show ?thesis
using infinite_imp_bij_betw2[OF assms] unfolding iA
by (metis bij_betw_inv card_of_ordIso)
qed
subsection {* Cardinals versus lists *}
text{* The next is an auxiliary operator, which shall be used for inductive
proofs of facts concerning the cardinality of @{text "List"} : *}
definition nlists :: "'a set \<Rightarrow> nat \<Rightarrow> 'a list set"
where "nlists A n \<equiv> {l. set l \<le> A \<and> length l = n}"
lemma lists_def2: "lists A = {l. set l \<le> A}"
using in_listsI by blast
lemma lists_UNION_nlists: "lists A = (\<Union> n. nlists A n)"
unfolding lists_def2 nlists_def by blast
lemma card_of_lists: "|A| \<le>o |lists A|"
proof-
let ?h = "\<lambda> a. [a]"
have "inj_on ?h A \<and> ?h ` A \<le> lists A"
unfolding inj_on_def lists_def2 by auto
thus ?thesis by (metis card_of_ordLeq)
qed
lemma nlists_0: "nlists A 0 = {[]}"
unfolding nlists_def by auto
lemma nlists_not_empty:
assumes "A \<noteq> {}"
shows "nlists A n \<noteq> {}"
proof(induct n, simp add: nlists_0)
fix n assume "nlists A n \<noteq> {}"
then obtain a and l where "a \<in> A \<and> l \<in> nlists A n" using assms by auto
hence "a # l \<in> nlists A (Suc n)" unfolding nlists_def by auto
thus "nlists A (Suc n) \<noteq> {}" by auto
qed
lemma Nil_in_lists: "[] \<in> lists A"
unfolding lists_def2 by auto
lemma lists_not_empty: "lists A \<noteq> {}"
using Nil_in_lists by blast
lemma card_of_nlists_Succ: "|nlists A (Suc n)| =o |A \<times> (nlists A n)|"
proof-
let ?B = "A \<times> (nlists A n)" let ?h = "\<lambda>(a,l). a # l"
have "inj_on ?h ?B \<and> ?h ` ?B \<le> nlists A (Suc n)"
unfolding inj_on_def nlists_def by auto
moreover have "nlists A (Suc n) \<le> ?h ` ?B"
proof(auto)
fix l assume "l \<in> nlists A (Suc n)"
hence 1: "length l = Suc n \<and> set l \<le> A" unfolding nlists_def by auto
then obtain a and l' where 2: "l = a # l'" by (auto simp: length_Suc_conv)
hence "a \<in> A \<and> set l' \<le> A \<and> length l' = n" using 1 by auto
thus "l \<in> ?h ` ?B" using 2 unfolding nlists_def by auto
qed
ultimately have "bij_betw ?h ?B (nlists A (Suc n))"
unfolding bij_betw_def by auto
thus ?thesis using card_of_ordIso ordIso_symmetric by blast
qed
lemma card_of_nlists_infinite:
assumes "infinite A"
shows "|nlists A n| \<le>o |A|"
proof(induct n)
have "A \<noteq> {}" using assms by auto
thus "|nlists A 0| \<le>o |A|" by (simp add: nlists_0 card_of_singl_ordLeq)
next
fix n assume IH: "|nlists A n| \<le>o |A|"
have "|nlists A (Suc n)| =o |A \<times> (nlists A n)|"
using card_of_nlists_Succ by blast
moreover
{have "nlists A n \<noteq> {}" using assms nlists_not_empty[of A] by blast
hence "|A \<times> (nlists A n)| =o |A|"
using assms IH by (auto simp add: card_of_Times_infinite)
}
ultimately show "|nlists A (Suc n)| \<le>o |A|"
using ordIso_transitive ordIso_iff_ordLeq by blast
qed
lemma card_of_lists_infinite:
assumes "infinite A"
shows "|lists A| =o |A|"
proof-
have "|lists A| \<le>o |A|"
using assms
by (auto simp add: lists_UNION_nlists card_of_UNION_ordLeq_infinite
infinite_iff_card_of_nat card_of_nlists_infinite)
thus ?thesis using card_of_lists ordIso_iff_ordLeq by blast
qed
lemma Card_order_lists_infinite:
assumes "Card_order r" and "infinite(Field r)"
shows "|lists(Field r)| =o r"
using assms card_of_lists_infinite card_of_Field_ordIso ordIso_transitive by blast
subsection {* The cardinal $\omega$ and the finite cardinals *}
text{* The cardinal $\omega$, of natural numbers, shall be the standard non-strict
order relation on
@{text "nat"}, that we abbreviate by @{text "natLeq"}. The finite cardinals
shall be the restrictions of these relations to the numbers smaller than
fixed numbers @{text "n"}, that we abbreviate by @{text "natLeq_on n"}. *}
abbreviation "(natLeq::(nat * nat) set) \<equiv> {(x,y). x \<le> y}"
abbreviation "(natLess::(nat * nat) set) \<equiv> {(x,y). x < y}"
abbreviation natLeq_on :: "nat \<Rightarrow> (nat * nat) set"
where "natLeq_on n \<equiv> {(x,y). x < n \<and> y < n \<and> x \<le> y}"
lemma infinite_cartesian_product:
assumes "infinite A" "infinite B"
shows "infinite (A \<times> B)"
proof
assume "finite (A \<times> B)"
from assms(1) have "A \<noteq> {}" by auto
with `finite (A \<times> B)` have "finite B" using finite_cartesian_productD2 by auto
with assms(2) show False by simp
qed
subsubsection {* First as well-orders *}
lemma Field_natLeq: "Field natLeq = (UNIV::nat set)"
by(unfold Field_def, auto)
lemma natLeq_Refl: "Refl natLeq"
unfolding refl_on_def Field_def by auto
lemma natLeq_trans: "trans natLeq"
unfolding trans_def by auto
lemma natLeq_Preorder: "Preorder natLeq"
unfolding preorder_on_def
by (auto simp add: natLeq_Refl natLeq_trans)
lemma natLeq_antisym: "antisym natLeq"
unfolding antisym_def by auto
lemma natLeq_Partial_order: "Partial_order natLeq"
unfolding partial_order_on_def
by (auto simp add: natLeq_Preorder natLeq_antisym)
lemma natLeq_Total: "Total natLeq"
unfolding total_on_def by auto
lemma natLeq_Linear_order: "Linear_order natLeq"
unfolding linear_order_on_def
by (auto simp add: natLeq_Partial_order natLeq_Total)
lemma natLeq_natLess_Id: "natLess = natLeq - Id"
by auto
lemma natLeq_Well_order: "Well_order natLeq"
unfolding well_order_on_def
using natLeq_Linear_order wf_less natLeq_natLess_Id by auto
corollary natLeq_well_order_on: "well_order_on UNIV natLeq"
using natLeq_Well_order Field_natLeq by auto
lemma natLeq_wo_rel: "wo_rel natLeq"
unfolding wo_rel_def using natLeq_Well_order .
lemma natLeq_UNIV_ofilter: "wo_rel.ofilter natLeq UNIV"
using natLeq_wo_rel Field_natLeq wo_rel.Field_ofilter[of natLeq] by auto
lemma closed_nat_set_iff:
assumes "\<forall>(m::nat) n. n \<in> A \<and> m \<le> n \<longrightarrow> m \<in> A"
shows "A = UNIV \<or> (\<exists>n. A = {0 ..< n})"
proof-
{assume "A \<noteq> UNIV" hence "\<exists>n. n \<notin> A" by blast
moreover obtain n where n_def: "n = (LEAST n. n \<notin> A)" by blast
ultimately have 1: "n \<notin> A \<and> (\<forall>m. m < n \<longrightarrow> m \<in> A)"
using LeastI_ex[of "\<lambda> n. n \<notin> A"] n_def Least_le[of "\<lambda> n. n \<notin> A"] by fastforce
have "A = {0 ..< n}"
proof(auto simp add: 1)
fix m assume *: "m \<in> A"
{assume "n \<le> m" with assms * have "n \<in> A" by blast
hence False using 1 by auto
}
thus "m < n" by fastforce
qed
hence "\<exists>n. A = {0 ..< n}" by blast
}
thus ?thesis by blast
qed
lemma Field_natLeq_on: "Field (natLeq_on n) = {0 ..< n}"
unfolding Field_def by auto
lemma natLeq_underS_less: "rel.underS natLeq n = {0 ..< n}"
unfolding rel.underS_def by auto
lemma Restr_natLeq: "Restr natLeq {0 ..< n} = natLeq_on n"
by auto
lemma Restr_natLeq2:
"Restr natLeq (rel.underS natLeq n) = natLeq_on n"
by (auto simp add: Restr_natLeq natLeq_underS_less)
lemma natLeq_on_Well_order: "Well_order(natLeq_on n)"
using Restr_natLeq[of n] natLeq_Well_order
Well_order_Restr[of natLeq "{0..<n}"] by auto
corollary natLeq_on_well_order_on: "well_order_on {0 ..< n} (natLeq_on n)"
using natLeq_on_Well_order Field_natLeq_on by auto
lemma natLeq_on_wo_rel: "wo_rel(natLeq_on n)"
unfolding wo_rel_def using natLeq_on_Well_order .
lemma natLeq_on_ofilter_less_eq:
"n \<le> m \<Longrightarrow> wo_rel.ofilter (natLeq_on m) {0 ..< n}"
by (auto simp add: natLeq_on_wo_rel wo_rel.ofilter_def,
simp add: Field_natLeq_on, unfold rel.under_def, auto)
lemma natLeq_on_ofilter_iff:
"wo_rel.ofilter (natLeq_on m) A = (\<exists>n \<le> m. A = {0 ..< n})"
proof(rule iffI)
assume *: "wo_rel.ofilter (natLeq_on m) A"
hence 1: "A \<le> {0..<m}"
by (auto simp add: natLeq_on_wo_rel wo_rel.ofilter_def rel.under_def Field_natLeq_on)
hence "\<forall>n1 n2. n2 \<in> A \<and> n1 \<le> n2 \<longrightarrow> n1 \<in> A"
using * by(fastforce simp add: natLeq_on_wo_rel wo_rel.ofilter_def rel.under_def)
hence "A = UNIV \<or> (\<exists>n. A = {0 ..< n})" using closed_nat_set_iff by blast
thus "\<exists>n \<le> m. A = {0 ..< n}" using 1 atLeastLessThan_less_eq by blast
next
assume "(\<exists>n\<le>m. A = {0 ..< n})"
thus "wo_rel.ofilter (natLeq_on m) A" by (auto simp add: natLeq_on_ofilter_less_eq)
qed
subsubsection {* Then as cardinals *}
lemma natLeq_Card_order: "Card_order natLeq"
proof(auto simp add: natLeq_Well_order
Card_order_iff_Restr_underS Restr_natLeq2, simp add: Field_natLeq)
fix n have "finite(Field (natLeq_on n))"
unfolding Field_natLeq_on by auto
moreover have "infinite(UNIV::nat set)" by auto
ultimately show "natLeq_on n <o |UNIV::nat set|"
using finite_ordLess_infinite[of "natLeq_on n" "|UNIV::nat set|"]
Field_card_of[of "UNIV::nat set"]
card_of_Well_order[of "UNIV::nat set"] natLeq_on_Well_order[of n] by auto
qed
corollary card_of_Field_natLeq:
"|Field natLeq| =o natLeq"
using Field_natLeq natLeq_Card_order Card_order_iff_ordIso_card_of[of natLeq]
ordIso_symmetric[of natLeq] by blast
corollary card_of_nat:
"|UNIV::nat set| =o natLeq"
using Field_natLeq card_of_Field_natLeq by auto
corollary infinite_iff_natLeq_ordLeq:
"infinite A = ( natLeq \<le>o |A| )"
using infinite_iff_card_of_nat[of A] card_of_nat
ordIso_ordLeq_trans ordLeq_ordIso_trans ordIso_symmetric by blast
corollary finite_iff_ordLess_natLeq:
"finite A = ( |A| <o natLeq)"
using infinite_iff_natLeq_ordLeq not_ordLeq_iff_ordLess
card_of_Well_order natLeq_Well_order by blast
lemma ordIso_natLeq_on_imp_finite:
"|A| =o natLeq_on n \<Longrightarrow> finite A"
unfolding ordIso_def iso_def[abs_def]
by (auto simp: Field_natLeq_on bij_betw_finite Field_card_of)
lemma natLeq_on_Card_order: "Card_order (natLeq_on n)"
proof(unfold card_order_on_def,
auto simp add: natLeq_on_Well_order, simp add: Field_natLeq_on)
fix r assume "well_order_on {0..<n} r"
thus "natLeq_on n \<le>o r"
using finite_atLeastLessThan natLeq_on_well_order_on
finite_well_order_on_ordIso ordIso_iff_ordLeq by blast
qed
corollary card_of_Field_natLeq_on:
"|Field (natLeq_on n)| =o natLeq_on n"
using Field_natLeq_on natLeq_on_Card_order
Card_order_iff_ordIso_card_of[of "natLeq_on n"]
ordIso_symmetric[of "natLeq_on n"] by blast
corollary card_of_less:
"|{0 ..< n}| =o natLeq_on n"
using Field_natLeq_on card_of_Field_natLeq_on by auto
lemma natLeq_on_ordLeq_less_eq:
"((natLeq_on m) \<le>o (natLeq_on n)) = (m \<le> n)"
proof
assume "natLeq_on m \<le>o natLeq_on n"
then obtain f where "inj_on f {0..<m} \<and> f ` {0..<m} \<le> {0..<n}"
unfolding ordLeq_def using
embed_inj_on[OF natLeq_on_Well_order[of m], of "natLeq_on n", unfolded Field_natLeq_on]
embed_Field[OF natLeq_on_Well_order[of m], of "natLeq_on n", unfolded Field_natLeq_on] by blast
thus "m \<le> n" using atLeastLessThan_less_eq2 by blast
next
assume "m \<le> n"
hence "inj_on id {0..<m} \<and> id ` {0..<m} \<le> {0..<n}" unfolding inj_on_def by auto
hence "|{0..<m}| \<le>o |{0..<n}|" using card_of_ordLeq by blast
thus "natLeq_on m \<le>o natLeq_on n"
using card_of_less ordIso_ordLeq_trans ordLeq_ordIso_trans ordIso_symmetric by blast
qed
lemma natLeq_on_ordLeq_less:
"((natLeq_on m) <o (natLeq_on n)) = (m < n)"
using not_ordLeq_iff_ordLess[of "natLeq_on m" "natLeq_on n"]
natLeq_on_Well_order natLeq_on_ordLeq_less_eq by auto
subsubsection {* "Backwards compatibility" with the numeric cardinal operator for finite sets *}
lemma finite_card_of_iff_card2:
assumes FIN: "finite A" and FIN': "finite B"
shows "( |A| \<le>o |B| ) = (card A \<le> card B)"
using assms card_of_ordLeq[of A B] inj_on_iff_card_le[of A B] by blast
lemma finite_imp_card_of_natLeq_on:
assumes "finite A"
shows "|A| =o natLeq_on (card A)"
proof-
obtain h where "bij_betw h A {0 ..< card A}"
using assms ex_bij_betw_finite_nat by blast
thus ?thesis using card_of_ordIso card_of_less ordIso_equivalence by blast
qed
lemma finite_iff_card_of_natLeq_on:
"finite A = (\<exists>n. |A| =o natLeq_on n)"
using finite_imp_card_of_natLeq_on[of A]
by(auto simp add: ordIso_natLeq_on_imp_finite)
subsection {* The successor of a cardinal *}
text{* First we define @{text "isCardSuc r r'"}, the notion of @{text "r'"}
being a successor cardinal of @{text "r"}. Although the definition does
not require @{text "r"} to be a cardinal, only this case will be meaningful. *}
definition isCardSuc :: "'a rel \<Rightarrow> 'a set rel \<Rightarrow> bool"
where
"isCardSuc r r' \<equiv>
Card_order r' \<and> r <o r' \<and>
(\<forall>(r''::'a set rel). Card_order r'' \<and> r <o r'' \<longrightarrow> r' \<le>o r'')"
text{* Now we introduce the cardinal-successor operator @{text "cardSuc"},
by picking {\em some} cardinal-order relation fulfilling @{text "isCardSuc"}.
Again, the picked item shall be proved unique up to order-isomorphism. *}
definition cardSuc :: "'a rel \<Rightarrow> 'a set rel"
where
"cardSuc r \<equiv> SOME r'. isCardSuc r r'"
lemma exists_minim_Card_order:
"\<lbrakk>R \<noteq> {}; \<forall>r \<in> R. Card_order r\<rbrakk> \<Longrightarrow> \<exists>r \<in> R. \<forall>r' \<in> R. r \<le>o r'"
unfolding card_order_on_def using exists_minim_Well_order by blast
lemma exists_isCardSuc:
assumes "Card_order r"
shows "\<exists>r'. isCardSuc r r'"
proof-
let ?R = "{(r'::'a set rel). Card_order r' \<and> r <o r'}"
have "|Pow(Field r)| \<in> ?R \<and> (\<forall>r \<in> ?R. Card_order r)" using assms
by (simp add: card_of_Card_order Card_order_Pow)
then obtain r where "r \<in> ?R \<and> (\<forall>r' \<in> ?R. r \<le>o r')"
using exists_minim_Card_order[of ?R] by blast
thus ?thesis unfolding isCardSuc_def by auto
qed
lemma cardSuc_isCardSuc:
assumes "Card_order r"
shows "isCardSuc r (cardSuc r)"
unfolding cardSuc_def using assms
by (simp add: exists_isCardSuc someI_ex)
lemma cardSuc_Card_order:
"Card_order r \<Longrightarrow> Card_order(cardSuc r)"
using cardSuc_isCardSuc unfolding isCardSuc_def by blast
lemma cardSuc_greater:
"Card_order r \<Longrightarrow> r <o cardSuc r"
using cardSuc_isCardSuc unfolding isCardSuc_def by blast
lemma cardSuc_ordLeq:
"Card_order r \<Longrightarrow> r \<le>o cardSuc r"
using cardSuc_greater ordLeq_iff_ordLess_or_ordIso by blast
text{* The minimality property of @{text "cardSuc"} originally present in its definition
is local to the type @{text "'a set rel"}, i.e., that of @{text "cardSuc r"}: *}
lemma cardSuc_least_aux:
"\<lbrakk>Card_order (r::'a rel); Card_order (r'::'a set rel); r <o r'\<rbrakk> \<Longrightarrow> cardSuc r \<le>o r'"
using cardSuc_isCardSuc unfolding isCardSuc_def by blast
text{* But from this we can infer general minimality: *}
lemma cardSuc_least:
assumes CARD: "Card_order r" and CARD': "Card_order r'" and LESS: "r <o r'"
shows "cardSuc r \<le>o r'"
proof-
let ?p = "cardSuc r"
have 0: "Well_order ?p \<and> Well_order r'"
using assms cardSuc_Card_order unfolding card_order_on_def by blast
{assume "r' <o ?p"
then obtain r'' where 1: "Field r'' < Field ?p" and 2: "r' =o r'' \<and> r'' <o ?p"
using internalize_ordLess[of r' ?p] by blast
(* *)
have "Card_order r''" using CARD' Card_order_ordIso2 2 by blast
moreover have "r <o r''" using LESS 2 ordLess_ordIso_trans by blast
ultimately have "?p \<le>o r''" using cardSuc_least_aux CARD by blast
hence False using 2 not_ordLess_ordLeq by blast
}
thus ?thesis using 0 ordLess_or_ordLeq by blast
qed
lemma cardSuc_ordLess_ordLeq:
assumes CARD: "Card_order r" and CARD': "Card_order r'"
shows "(r <o r') = (cardSuc r \<le>o r')"
proof(auto simp add: assms cardSuc_least)
assume "cardSuc r \<le>o r'"
thus "r <o r'" using assms cardSuc_greater ordLess_ordLeq_trans by blast
qed
lemma cardSuc_ordLeq_ordLess:
assumes CARD: "Card_order r" and CARD': "Card_order r'"
shows "(r' <o cardSuc r) = (r' \<le>o r)"
proof-
have "Well_order r \<and> Well_order r'"
using assms unfolding card_order_on_def by auto
moreover have "Well_order(cardSuc r)"
using assms cardSuc_Card_order card_order_on_def by blast
ultimately show ?thesis
using assms cardSuc_ordLess_ordLeq[of r r']
not_ordLeq_iff_ordLess[of r r'] not_ordLeq_iff_ordLess[of r' "cardSuc r"] by blast
qed
lemma cardSuc_mono_ordLeq:
assumes CARD: "Card_order r" and CARD': "Card_order r'"
shows "(cardSuc r \<le>o cardSuc r') = (r \<le>o r')"
using assms cardSuc_ordLeq_ordLess cardSuc_ordLess_ordLeq cardSuc_Card_order by blast
lemma cardSuc_invar_ordIso:
assumes CARD: "Card_order r" and CARD': "Card_order r'"
shows "(cardSuc r =o cardSuc r') = (r =o r')"
proof-
have 0: "Well_order r \<and> Well_order r' \<and> Well_order(cardSuc r) \<and> Well_order(cardSuc r')"
using assms by (simp add: card_order_on_well_order_on cardSuc_Card_order)
thus ?thesis
using ordIso_iff_ordLeq[of r r'] ordIso_iff_ordLeq
using cardSuc_mono_ordLeq[of r r'] cardSuc_mono_ordLeq[of r' r] assms by blast
qed
lemma cardSuc_natLeq_on_Suc:
"cardSuc(natLeq_on n) =o natLeq_on(Suc n)"
proof-
obtain r r' p where r_def: "r = natLeq_on n" and
r'_def: "r' = cardSuc(natLeq_on n)" and
p_def: "p = natLeq_on(Suc n)" by blast
(* Preliminary facts: *)
have CARD: "Card_order r \<and> Card_order r' \<and> Card_order p" unfolding r_def r'_def p_def
using cardSuc_ordLess_ordLeq natLeq_on_Card_order cardSuc_Card_order by blast
hence WELL: "Well_order r \<and> Well_order r' \<and> Well_order p"
unfolding card_order_on_def by force
have FIELD: "Field r = {0..<n} \<and> Field p = {0..<(Suc n)}"
unfolding r_def p_def Field_natLeq_on by simp
hence FIN: "finite (Field r)" by force
have "r <o r'" using CARD unfolding r_def r'_def using cardSuc_greater by blast
hence "|Field r| <o r'" using CARD card_of_Field_ordIso ordIso_ordLess_trans by blast
hence LESS: "|Field r| <o |Field r'|"
using CARD card_of_Field_ordIso ordLess_ordIso_trans ordIso_symmetric by blast
(* Main proof: *)
have "r' \<le>o p" using CARD unfolding r_def r'_def p_def
using natLeq_on_ordLeq_less cardSuc_ordLess_ordLeq by blast
moreover have "p \<le>o r'"
proof-
{assume "r' <o p"
then obtain f where 0: "embedS r' p f" unfolding ordLess_def by force
let ?q = "Restr p (f ` Field r')"
have 1: "embed r' p f" using 0 unfolding embedS_def by force
hence 2: "f ` Field r' < {0..<(Suc n)}"
using WELL FIELD 0 by (auto simp add: embedS_iff)
have "wo_rel.ofilter p (f ` Field r')" using embed_Field_ofilter 1 WELL by blast
then obtain m where "m \<le> Suc n" and 3: "f ` (Field r') = {0..<m}"
unfolding p_def by (auto simp add: natLeq_on_ofilter_iff)
hence 4: "m \<le> n" using 2 by force
(* *)
have "bij_betw f (Field r') (f ` (Field r'))"
using 1 WELL embed_inj_on unfolding bij_betw_def by force
moreover have "finite(f ` (Field r'))" using 3 finite_atLeastLessThan[of 0 m] by force
ultimately have 5: "finite (Field r') \<and> card(Field r') = card (f ` (Field r'))"
using bij_betw_same_card bij_betw_finite by metis
hence "card(Field r') \<le> card(Field r)" using 3 4 FIELD by force
hence "|Field r'| \<le>o |Field r|" using FIN 5 finite_card_of_iff_card2 by blast
hence False using LESS not_ordLess_ordLeq by auto
}
thus ?thesis using WELL CARD by (fastforce simp: not_ordLess_iff_ordLeq)
qed
ultimately show ?thesis using ordIso_iff_ordLeq unfolding r'_def p_def by blast
qed
lemma card_of_cardSuc_finite:
"finite(Field(cardSuc |A| )) = finite A"
proof
assume *: "finite (Field (cardSuc |A| ))"
have 0: "|Field(cardSuc |A| )| =o cardSuc |A|"
using card_of_Card_order cardSuc_Card_order card_of_Field_ordIso by blast
hence "|A| \<le>o |Field(cardSuc |A| )|"
using card_of_Card_order[of A] cardSuc_ordLeq[of "|A|"] ordIso_symmetric
ordLeq_ordIso_trans by blast
thus "finite A" using * card_of_ordLeq_finite by blast
next
assume "finite A"
then obtain n where "|A| =o natLeq_on n" using finite_iff_card_of_natLeq_on by blast
hence "cardSuc |A| =o cardSuc(natLeq_on n)"
using card_of_Card_order cardSuc_invar_ordIso natLeq_on_Card_order by blast
hence "cardSuc |A| =o natLeq_on(Suc n)"
using cardSuc_natLeq_on_Suc ordIso_transitive by blast
hence "cardSuc |A| =o |{0..<(Suc n)}|" using card_of_less ordIso_equivalence by blast
moreover have "|Field (cardSuc |A| ) | =o cardSuc |A|"
using card_of_Field_ordIso cardSuc_Card_order card_of_Card_order by blast
ultimately have "|Field (cardSuc |A| ) | =o |{0..<(Suc n)}|"
using ordIso_equivalence by blast
thus "finite (Field (cardSuc |A| ))"
using card_of_ordIso_finite finite_atLeastLessThan by blast
qed
lemma cardSuc_finite:
assumes "Card_order r"
shows "finite (Field (cardSuc r)) = finite (Field r)"
proof-
let ?A = "Field r"
have "|?A| =o r" using assms by (simp add: card_of_Field_ordIso)
hence "cardSuc |?A| =o cardSuc r" using assms
by (simp add: card_of_Card_order cardSuc_invar_ordIso)
moreover have "|Field (cardSuc |?A| ) | =o cardSuc |?A|"
by (simp add: card_of_card_order_on Field_card_of card_of_Field_ordIso cardSuc_Card_order)
moreover
{have "|Field (cardSuc r) | =o cardSuc r"
using assms by (simp add: card_of_Field_ordIso cardSuc_Card_order)
hence "cardSuc r =o |Field (cardSuc r) |"
using ordIso_symmetric by blast
}
ultimately have "|Field (cardSuc |?A| ) | =o |Field (cardSuc r) |"
using ordIso_transitive by blast
hence "finite (Field (cardSuc |?A| )) = finite (Field (cardSuc r))"
using card_of_ordIso_finite by blast
thus ?thesis by (simp only: card_of_cardSuc_finite)
qed
lemma card_of_Plus_ordLeq_infinite_Field:
assumes r: "infinite (Field r)" and A: "|A| \<le>o r" and B: "|B| \<le>o r"
and c: "Card_order r"
shows "|A <+> B| \<le>o r"
proof-
let ?r' = "cardSuc r"
have "Card_order ?r' \<and> infinite (Field ?r')" using assms
by (simp add: cardSuc_Card_order cardSuc_finite)
moreover have "|A| <o ?r'" and "|B| <o ?r'" using A B c
by (auto simp: card_of_card_order_on Field_card_of cardSuc_ordLeq_ordLess)
ultimately have "|A <+> B| <o ?r'"
using card_of_Plus_ordLess_infinite_Field by blast
thus ?thesis using c r
by (simp add: card_of_card_order_on Field_card_of cardSuc_ordLeq_ordLess)
qed
lemma card_of_Un_ordLeq_infinite_Field:
assumes C: "infinite (Field r)" and A: "|A| \<le>o r" and B: "|B| \<le>o r"
and "Card_order r"
shows "|A Un B| \<le>o r"
using assms card_of_Plus_ordLeq_infinite_Field card_of_Un_Plus_ordLeq
ordLeq_transitive by blast
subsection {* Regular cardinals *}
definition cofinal where
"cofinal A r \<equiv>
ALL a : Field r. EX b : A. a \<noteq> b \<and> (a,b) : r"
definition regular where
"regular r \<equiv>
ALL K. K \<le> Field r \<and> cofinal K r \<longrightarrow> |K| =o r"
definition relChain where
"relChain r As \<equiv>
ALL i j. (i,j) \<in> r \<longrightarrow> As i \<le> As j"
lemma regular_UNION:
assumes r: "Card_order r" "regular r"
and As: "relChain r As"
and Bsub: "B \<le> (UN i : Field r. As i)"
and cardB: "|B| <o r"
shows "EX i : Field r. B \<le> As i"
proof-
let ?phi = "%b j. j : Field r \<and> b : As j"
have "ALL b : B. EX j. ?phi b j" using Bsub by blast
then obtain f where f: "!! b. b : B \<Longrightarrow> ?phi b (f b)"
using bchoice[of B ?phi] by blast
let ?K = "f ` B"
{assume 1: "!! i. i : Field r \<Longrightarrow> ~ B \<le> As i"
have 2: "cofinal ?K r"
unfolding cofinal_def proof auto
fix i assume i: "i : Field r"
with 1 obtain b where b: "b : B \<and> b \<notin> As i" by blast
hence "i \<noteq> f b \<and> ~ (f b,i) : r"
using As f unfolding relChain_def by auto
hence "i \<noteq> f b \<and> (i, f b) : r" using r
unfolding card_order_on_def well_order_on_def linear_order_on_def
total_on_def using i f b by auto
with b show "\<exists>b\<in>B. i \<noteq> f b \<and> (i, f b) \<in> r" by blast
qed
moreover have "?K \<le> Field r" using f by blast
ultimately have "|?K| =o r" using 2 r unfolding regular_def by blast
moreover
{
have "|?K| <=o |B|" using card_of_image .
hence "|?K| <o r" using cardB ordLeq_ordLess_trans by blast
}
ultimately have False using not_ordLess_ordIso by blast
}
thus ?thesis by blast
qed
lemma infinite_cardSuc_regular:
assumes r_inf: "infinite (Field r)" and r_card: "Card_order r"
shows "regular (cardSuc r)"
proof-
let ?r' = "cardSuc r"
have r': "Card_order ?r'"
"!! p. Card_order p \<longrightarrow> (p \<le>o r) = (p <o ?r')"
using r_card by (auto simp: cardSuc_Card_order cardSuc_ordLeq_ordLess)
show ?thesis
unfolding regular_def proof auto
fix K assume 1: "K \<le> Field ?r'" and 2: "cofinal K ?r'"
hence "|K| \<le>o |Field ?r'|" by (simp only: card_of_mono1)
also have 22: "|Field ?r'| =o ?r'"
using r' by (simp add: card_of_Field_ordIso[of ?r'])
finally have "|K| \<le>o ?r'" .
moreover
{let ?L = "UN j : K. rel.underS ?r' j"
let ?J = "Field r"
have rJ: "r =o |?J|"
using r_card card_of_Field_ordIso ordIso_symmetric by blast
assume "|K| <o ?r'"
hence "|K| <=o r" using r' card_of_Card_order[of K] by blast
hence "|K| \<le>o |?J|" using rJ ordLeq_ordIso_trans by blast
moreover
{have "ALL j : K. |rel.underS ?r' j| <o ?r'"
using r' 1 by (auto simp: card_of_underS)
hence "ALL j : K. |rel.underS ?r' j| \<le>o r"
using r' card_of_Card_order by blast
hence "ALL j : K. |rel.underS ?r' j| \<le>o |?J|"
using rJ ordLeq_ordIso_trans by blast
}
ultimately have "|?L| \<le>o |?J|"
using r_inf card_of_UNION_ordLeq_infinite by blast
hence "|?L| \<le>o r" using rJ ordIso_symmetric ordLeq_ordIso_trans by blast
hence "|?L| <o ?r'" using r' card_of_Card_order by blast
moreover
{
have "Field ?r' \<le> ?L"
using 2 unfolding rel.underS_def cofinal_def by auto
hence "|Field ?r'| \<le>o |?L|" by (simp add: card_of_mono1)
hence "?r' \<le>o |?L|"
using 22 ordIso_ordLeq_trans ordIso_symmetric by blast
}
ultimately have "|?L| <o |?L|" using ordLess_ordLeq_trans by blast
hence False using ordLess_irreflexive by blast
}
ultimately show "|K| =o ?r'"
unfolding ordLeq_iff_ordLess_or_ordIso by blast
qed
qed
lemma cardSuc_UNION:
assumes r: "Card_order r" and "infinite (Field r)"
and As: "relChain (cardSuc r) As"
and Bsub: "B \<le> (UN i : Field (cardSuc r). As i)"
and cardB: "|B| <=o r"
shows "EX i : Field (cardSuc r). B \<le> As i"
proof-
let ?r' = "cardSuc r"
have "Card_order ?r' \<and> |B| <o ?r'"
using r cardB cardSuc_ordLeq_ordLess cardSuc_Card_order
card_of_Card_order by blast
moreover have "regular ?r'"
using assms by(simp add: infinite_cardSuc_regular)
ultimately show ?thesis
using As Bsub cardB regular_UNION by blast
qed
subsection {* Others *}
lemma card_of_infinite_diff_finite:
assumes "infinite A" and "finite B"
shows "|A - B| =o |A|"
by (metis assms card_of_Un_diff_infinite finite_ordLess_infinite2)
(* function space *)
definition Func where
"Func A B = {f . (\<forall> a \<in> A. f a \<in> B) \<and> (\<forall> a. a \<notin> A \<longrightarrow> f a = undefined)}"
lemma Func_empty:
"Func {} B = {\<lambda>x. undefined}"
unfolding Func_def by auto
lemma Func_elim:
assumes "g \<in> Func A B" and "a \<in> A"
shows "\<exists> b. b \<in> B \<and> g a = b"
using assms unfolding Func_def by (cases "g a = undefined") auto
definition curr where
"curr A f \<equiv> \<lambda> a. if a \<in> A then \<lambda>b. f (a,b) else undefined"
lemma curr_in:
assumes f: "f \<in> Func (A <*> B) C"
shows "curr A f \<in> Func A (Func B C)"
using assms unfolding curr_def Func_def by auto
lemma curr_inj:
assumes "f1 \<in> Func (A <*> B) C" and "f2 \<in> Func (A <*> B) C"
shows "curr A f1 = curr A f2 \<longleftrightarrow> f1 = f2"
proof safe
assume c: "curr A f1 = curr A f2"
show "f1 = f2"
proof (rule ext, clarify)
fix a b show "f1 (a, b) = f2 (a, b)"
proof (cases "(a,b) \<in> A <*> B")
case False
thus ?thesis using assms unfolding Func_def by auto
next
case True hence a: "a \<in> A" and b: "b \<in> B" by auto
thus ?thesis
using c unfolding curr_def fun_eq_iff by(elim allE[of _ a]) simp
qed
qed
qed
lemma curr_surj:
assumes "g \<in> Func A (Func B C)"
shows "\<exists> f \<in> Func (A <*> B) C. curr A f = g"
proof
let ?f = "\<lambda> ab. if fst ab \<in> A \<and> snd ab \<in> B then g (fst ab) (snd ab) else undefined"
show "curr A ?f = g"
proof (rule ext)
fix a show "curr A ?f a = g a"
proof (cases "a \<in> A")
case False
hence "g a = undefined" using assms unfolding Func_def by auto
thus ?thesis unfolding curr_def using False by simp
next
case True
obtain g1 where "g1 \<in> Func B C" and "g a = g1"
using assms using Func_elim[OF assms True] by blast
thus ?thesis using True unfolding Func_def curr_def by auto
qed
qed
show "?f \<in> Func (A <*> B) C" using assms unfolding Func_def mem_Collect_eq by auto
qed
lemma bij_betw_curr:
"bij_betw (curr A) (Func (A <*> B) C) (Func A (Func B C))"
unfolding bij_betw_def inj_on_def image_def
using curr_in curr_inj curr_surj by blast
lemma card_of_Func_Times:
"|Func (A <*> B) C| =o |Func A (Func B C)|"
unfolding card_of_ordIso[symmetric]
using bij_betw_curr by blast
definition Func_map where
"Func_map B2 f1 f2 g b2 \<equiv> if b2 \<in> B2 then f1 (g (f2 b2)) else undefined"
lemma Func_map:
assumes g: "g \<in> Func A2 A1" and f1: "f1 ` A1 \<subseteq> B1" and f2: "f2 ` B2 \<subseteq> A2"
shows "Func_map B2 f1 f2 g \<in> Func B2 B1"
using assms unfolding Func_def Func_map_def mem_Collect_eq by auto
lemma Func_non_emp:
assumes "B \<noteq> {}"
shows "Func A B \<noteq> {}"
proof-
obtain b where b: "b \<in> B" using assms by auto
hence "(\<lambda> a. if a \<in> A then b else undefined) \<in> Func A B" unfolding Func_def by auto
thus ?thesis by blast
qed
lemma Func_is_emp:
"Func A B = {} \<longleftrightarrow> A \<noteq> {} \<and> B = {}" (is "?L \<longleftrightarrow> ?R")
proof
assume L: ?L
moreover {assume "A = {}" hence False using L Func_empty by auto}
moreover {assume "B \<noteq> {}" hence False using L Func_non_emp by metis}
ultimately show ?R by blast
next
assume R: ?R
moreover
{fix f assume "f \<in> Func A B"
moreover obtain a where "a \<in> A" using R by blast
ultimately obtain b where "b \<in> B" unfolding Func_def by(cases "f a = undefined", force+)
with R have False by auto
}
thus ?L by blast
qed
lemma Func_map_surj:
assumes B1: "f1 ` A1 = B1" and A2: "inj_on f2 B2" "f2 ` B2 \<subseteq> A2"
and B2A2: "B2 = {} \<Longrightarrow> A2 = {}"
shows "Func B2 B1 = Func_map B2 f1 f2 ` Func A2 A1"
proof(cases "B2 = {}")
case True
thus ?thesis using B2A2 by (auto simp: Func_empty Func_map_def)
next
case False note B2 = False
show ?thesis
proof safe
fix h assume h: "h \<in> Func B2 B1"
def j1 \<equiv> "inv_into A1 f1"
have "\<forall> a2 \<in> f2 ` B2. \<exists> b2. b2 \<in> B2 \<and> f2 b2 = a2" by blast
then obtain k where k: "\<forall> a2 \<in> f2 ` B2. k a2 \<in> B2 \<and> f2 (k a2) = a2" by metis
{fix b2 assume b2: "b2 \<in> B2"
hence "f2 (k (f2 b2)) = f2 b2" using k A2(2) by auto
moreover have "k (f2 b2) \<in> B2" using b2 A2(2) k by auto
ultimately have "k (f2 b2) = b2" using b2 A2(1) unfolding inj_on_def by blast
} note kk = this
obtain b22 where b22: "b22 \<in> B2" using B2 by auto
def j2 \<equiv> "\<lambda> a2. if a2 \<in> f2 ` B2 then k a2 else b22"
have j2A2: "j2 ` A2 \<subseteq> B2" unfolding j2_def using k b22 by auto
have j2: "\<And> b2. b2 \<in> B2 \<Longrightarrow> j2 (f2 b2) = b2"
using kk unfolding j2_def by auto
def g \<equiv> "Func_map A2 j1 j2 h"
have "Func_map B2 f1 f2 g = h"
proof (rule ext)
fix b2 show "Func_map B2 f1 f2 g b2 = h b2"
proof(cases "b2 \<in> B2")
case True
show ?thesis
proof (cases "h b2 = undefined")
case True
hence b1: "h b2 \<in> f1 ` A1" using h `b2 \<in> B2` unfolding B1 Func_def by auto
show ?thesis using A2 f_inv_into_f[OF b1]
unfolding True g_def Func_map_def j1_def j2[OF `b2 \<in> B2`] by auto
qed(insert A2 True j2[OF True] h B1, unfold j1_def g_def Func_def Func_map_def,
auto intro: f_inv_into_f)
qed(insert h, unfold Func_def Func_map_def, auto)
qed
moreover have "g \<in> Func A2 A1" unfolding g_def apply(rule Func_map[OF h])
using inv_into_into j2A2 B1 A2 inv_into_into
unfolding j1_def image_def by fast+
ultimately show "h \<in> Func_map B2 f1 f2 ` Func A2 A1"
unfolding Func_map_def[abs_def] unfolding image_def by auto
qed(insert B1 Func_map[OF _ _ A2(2)], auto)
qed
lemma card_of_Pow_Func:
"|Pow A| =o |Func A (UNIV::bool set)|"
proof-
def F \<equiv> "\<lambda> A' a. if a \<in> A then (if a \<in> A' then True else False)
else undefined"
have "bij_betw F (Pow A) (Func A (UNIV::bool set))"
unfolding bij_betw_def inj_on_def proof (intro ballI impI conjI)
fix A1 A2 assume "A1 \<in> Pow A" "A2 \<in> Pow A" "F A1 = F A2"
thus "A1 = A2" unfolding F_def Pow_def fun_eq_iff by (auto split: split_if_asm)
next
show "F ` Pow A = Func A UNIV"
proof safe
fix f assume f: "f \<in> Func A (UNIV::bool set)"
show "f \<in> F ` Pow A" unfolding image_def mem_Collect_eq proof(intro bexI)
let ?A1 = "{a \<in> A. f a = True}"
show "f = F ?A1" unfolding F_def apply(rule ext)
using f unfolding Func_def mem_Collect_eq by auto
qed auto
qed(unfold Func_def mem_Collect_eq F_def, auto)
qed
thus ?thesis unfolding card_of_ordIso[symmetric] by blast
qed
lemma card_of_Func_mono:
fixes A1 A2 :: "'a set" and B :: "'b set"
assumes A12: "A1 \<subseteq> A2" and B: "B \<noteq> {}"
shows "|Func A1 B| \<le>o |Func A2 B|"
proof-
obtain bb where bb: "bb \<in> B" using B by auto
def F \<equiv> "\<lambda> (f1::'a \<Rightarrow> 'b) a. if a \<in> A2 then (if a \<in> A1 then f1 a else bb)
else undefined"
show ?thesis unfolding card_of_ordLeq[symmetric] proof(intro exI[of _ F] conjI)
show "inj_on F (Func A1 B)" unfolding inj_on_def proof safe
fix f g assume f: "f \<in> Func A1 B" and g: "g \<in> Func A1 B" and eq: "F f = F g"
show "f = g"
proof(rule ext)
fix a show "f a = g a"
proof(cases "a \<in> A1")
case True
thus ?thesis using eq A12 unfolding F_def fun_eq_iff
by (elim allE[of _ a]) auto
qed(insert f g, unfold Func_def, fastforce)
qed
qed
qed(insert bb, unfold Func_def F_def, force)
qed
lemma ordLeq_Func:
assumes "{b1,b2} \<subseteq> B" "b1 \<noteq> b2"
shows "|A| \<le>o |Func A B|"
unfolding card_of_ordLeq[symmetric] proof(intro exI conjI)
let ?F = "\<lambda> aa a. if a \<in> A then (if a = aa then b1 else b2) else undefined"
show "inj_on ?F A" using assms unfolding inj_on_def fun_eq_iff by auto
show "?F ` A \<subseteq> Func A B" using assms unfolding Func_def by auto
qed
lemma infinite_Func:
assumes A: "infinite A" and B: "{b1,b2} \<subseteq> B" "b1 \<noteq> b2"
shows "infinite (Func A B)"
using ordLeq_Func[OF B] by (metis A card_of_ordLeq_finite)
lemma card_of_Func_UNIV:
"|Func (UNIV::'a set) (B::'b set)| =o |{f::'a \<Rightarrow> 'b. range f \<subseteq> B}|"
apply(rule ordIso_symmetric) proof(intro card_of_ordIsoI)
let ?F = "\<lambda> f (a::'a). ((f a)::'b)"
show "bij_betw ?F {f. range f \<subseteq> B} (Func UNIV B)"
unfolding bij_betw_def inj_on_def proof safe
fix h :: "'a \<Rightarrow> 'b" assume h: "h \<in> Func UNIV B"
hence "\<forall> a. \<exists> b. h a = b" unfolding Func_def by auto
then obtain f where f: "\<forall> a. h a = f a" by metis
hence "range f \<subseteq> B" using h unfolding Func_def by auto
thus "h \<in> (\<lambda>f a. f a) ` {f. range f \<subseteq> B}" using f unfolding image_def by auto
qed(unfold Func_def fun_eq_iff, auto)
qed
end