Received some local definitions from AC_Equiv.thy.
(*
file OrdQuant.ML
Proofs concerning special instances of quantifiers and union operator.
Very useful when proving theorems about ordinals.
*)
open OrdQuant;
(*** universal quantifier for ordinals ***)
qed_goalw "oallI" OrdQuant.thy [Oall_def]
"[| !!x. x<A ==> P(x) |] ==> ALL x<A. P(x)"
(fn prems=> [ (REPEAT (ares_tac (prems @ [allI,impI]) 1)) ]);
qed_goalw "ospec" OrdQuant.thy [Oall_def]
"[| ALL x<A. P(x); x<A |] ==> P(x)"
(fn major::prems=>
[ (rtac (major RS spec RS mp) 1),
(resolve_tac prems 1) ]);
qed_goalw "oallE" OrdQuant.thy [Oall_def]
"[| ALL x<A. P(x); P(x) ==> Q; ~x<A ==> Q |] ==> Q"
(fn major::prems=>
[ (rtac (major RS allE) 1),
(REPEAT (eresolve_tac (prems@[asm_rl,impCE]) 1)) ]);
qed_goal "rev_oallE" OrdQuant.thy
"[| ALL x<A. P(x); ~x<A ==> Q; P(x) ==> Q |] ==> Q"
(fn major::prems=>
[ (rtac (major RS oallE) 1),
(REPEAT (eresolve_tac prems 1)) ]);
(*Trival rewrite rule; (ALL x<a.P)<->P holds only if a is not 0!*)
qed_goal "oall_simp" OrdQuant.thy "(ALL x<a. True) <-> True"
(fn _=> [ (REPEAT (ares_tac [TrueI,oallI,iffI] 1)) ]);
(*Congruence rule for rewriting*)
qed_goalw "oall_cong" OrdQuant.thy [Oall_def]
"[| a=a'; !!x. x<a' ==> P(x) <-> P'(x) |] ==> Oall(a,P) <-> Oall(a',P')"
(fn prems=> [ (simp_tac (FOL_ss addsimps prems) 1) ]);
(*** existential quantifier for ordinals ***)
qed_goalw "oexI" OrdQuant.thy [Oex_def]
"[| P(x); x<A |] ==> EX x<A. P(x)"
(fn prems=> [ (REPEAT (ares_tac (prems @ [exI,conjI]) 1)) ]);
(*Not of the general form for such rules; ~EX has become ALL~ *)
qed_goal "oexCI" OrdQuant.thy
"[| ALL x<A. ~P(x) ==> P(a); a<A |] ==> EX x<A.P(x)"
(fn prems=>
[ (rtac classical 1),
(REPEAT (ares_tac (prems@[oexI,oallI,notI,notE]) 1)) ]);
qed_goalw "oexE" OrdQuant.thy [Oex_def]
"[| EX x<A. P(x); !!x. [| x<A; P(x) |] ==> Q \
\ |] ==> Q"
(fn major::prems=>
[ (rtac (major RS exE) 1),
(REPEAT (eresolve_tac (prems @ [asm_rl,conjE]) 1)) ]);
qed_goalw "oex_cong" OrdQuant.thy [Oex_def]
"[| a=a'; !!x. x<a' ==> P(x) <-> P'(x) \
\ |] ==> Oex(a,P) <-> Oex(a',P')"
(fn prems=> [ (simp_tac (FOL_ss addsimps prems addcongs [conj_cong]) 1) ]);
(*** Rules for Unions ***)
(*The order of the premises presupposes that a is rigid; A may be flexible*)
qed_goal "OUnionI" OrdQuant.thy "[| b<a; A: B(b) |] ==> A: OUnion(a, %z. B(z))"
(fn prems=>
[ (resolve_tac [OUnion_iff RS iffD2] 1),
(REPEAT (resolve_tac (prems @ [oexI]) 1)) ]);
qed_goal "OUnionE" OrdQuant.thy
"[| A : OUnion(a, %z. B(z)); !!b.[| A: B(b); b<a |] ==> R |] ==> R"
(fn prems=>
[ (resolve_tac [OUnion_iff RS iffD1 RS oexE] 1),
(REPEAT (ares_tac prems 1)) ]);
(*** Rules for Unions of families ***)
(* UN x<a. B(x) abbreviates OUnion(a, %x. B(x)) *)
qed_goalw "OUN_iff" OrdQuant.thy [Oex_def]
"b : (UN x<a. B(x)) <-> (EX x<a. b : B(x))"
(fn _=> [ (fast_tac (FOL_cs addIs [OUnionI]
addSEs [OUnionE]) 1) ]);
(*The order of the premises presupposes that a is rigid; b may be flexible*)
qed_goal "OUN_I" OrdQuant.thy "[| c<a; b: B(c) |] ==> b: (UN x<a. B(x))"
(fn prems=>
[ (REPEAT (resolve_tac (prems@[OUnionI]) 1)) ]);
qed_goal "OUN_E" OrdQuant.thy
"[| b : (UN x<a. B(x)); !!x.[| x<a; b: B(x) |] ==> R |] ==> R"
(fn major::prems=>
[ (rtac (major RS OUnionE) 1),
(REPEAT (eresolve_tac (prems@[asm_rl, RepFunE, subst]) 1)) ]);
val prems = goal thy "[| a=b; !!x. x<b ==> f(x)=g(x) |] ==> OUnion(a,f) = OUnion(b,g)";
by (resolve_tac [OUnion_iff RS iff_sym RSN (2, OUnion_iff RS iff_trans RS iff_trans) RS equality_iffI] 1);
by (resolve_tac [oex_cong] 1);
by (resolve_tac prems 1);
by (dresolve_tac prems 1);
by (fast_tac (ZF_cs addSEs [equalityE]) 1);
qed "OUnion_cong";
val OrdQuant_cs = ZF_cs
addSIs [oallI]
addIs [oexI, OUnionI]
addSEs [oexE, OUnionE]
addEs [rev_oallE];
val OrdQuant_ss = ZF_ss addsimps [oall_simp, ltD RS beta]
addcongs [oall_cong, OUnion_cong];