doc-src/Exercises/2001/a5/generated/Aufgabe5.tex
author skalberg
Sun, 31 Aug 2003 21:24:29 +0200
changeset 14177 06b19a7e675a
parent 13841 ed4e97874454
permissions -rw-r--r--
Added 'ambiguity_is_error' flag, which, if set, makes the parser fail, rather than just issue a warning, when the input parsed is ambiguous.

%
\begin{isabellebody}%
\def\isabellecontext{Aufgabe{\isadigit{5}}}%
\isamarkupfalse%
%
\isamarkupsubsection{Interval lists%
}
\isamarkuptrue%
%
\begin{isamarkuptext}%
Sets of natural numbers can be implemented as lists of
intervals, where an interval is simply a pair of numbers. For example
the set \isa{{\isacharbraceleft}{\isadigit{2}}{\isacharcomma}\ {\isadigit{3}}{\isacharcomma}\ {\isadigit{5}}{\isacharcomma}\ {\isadigit{7}}{\isacharcomma}\ {\isadigit{8}}{\isacharcomma}\ {\isadigit{9}}{\isacharbraceright}} can be represented by the
list \isa{{\isacharbrackleft}{\isacharparenleft}{\isadigit{2}}{\isacharcomma}\ {\isadigit{3}}{\isacharparenright}{\isacharcomma}\ {\isacharparenleft}{\isadigit{5}}{\isacharcomma}\ {\isadigit{5}}{\isacharparenright}{\isacharcomma}\ {\isacharparenleft}{\isadigit{7}}{\isacharcomma}\ {\isadigit{9}}{\isacharparenright}{\isacharbrackright}}. A typical application
is the list of free blocks of dynamically allocated memory.%
\end{isamarkuptext}%
\isamarkuptrue%
%
\isamarkupsubsubsection{Definitions%
}
\isamarkuptrue%
%
\begin{isamarkuptext}%
We introduce the type%
\end{isamarkuptext}%
\isamarkuptrue%
\isacommand{types}\ intervals\ {\isacharequal}\ {\isachardoublequote}{\isacharparenleft}nat{\isacharasterisk}nat{\isacharparenright}\ list{\isachardoublequote}\isamarkupfalse%
%
\begin{isamarkuptext}%
This type contains all possible lists of pairs of natural
numbers, even those that we may not recognize as meaningful
representations of sets. Thus you should introduce an \emph{invariant}%
\end{isamarkuptext}%
\isamarkuptrue%
\isacommand{consts}\ inv\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequote}intervals\ {\isacharequal}{\isachargreater}\ bool{\isachardoublequote}\isamarkupfalse%
%
\begin{isamarkuptext}%
that characterizes exactly those interval lists representing
sets.  (The reason why we call this an invariant will become clear
below.)  For efficiency reasons intervals should be sorted in
ascending order, the lower bound of each interval should be less or
equal the upper bound, and the intervals should be chosen as large as
possible, i.e.\ no two adjecent intervals should overlap or even touch
each other.  It turns out to be convenient to define \isa{Aufgabe{\isadigit{5}}{\isachardot}inv} in
terms of a more general function%
\end{isamarkuptext}%
\isamarkuptrue%
\isacommand{consts}\ inv{\isadigit{2}}\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequote}nat\ {\isacharequal}{\isachargreater}\ intervals\ {\isacharequal}{\isachargreater}\ bool{\isachardoublequote}\isamarkupfalse%
%
\begin{isamarkuptext}%
such that the additional argument is a lower bound for the
intervals in the list.

To relate intervals back to sets define an \emph{abstraktion funktion}%
\end{isamarkuptext}%
\isamarkuptrue%
\isacommand{consts}\ set{\isacharunderscore}of\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequote}intervals\ {\isacharequal}{\isachargreater}\ nat\ set{\isachardoublequote}\isamarkupfalse%
%
\begin{isamarkuptext}%
that yields the set corresponding to an interval list (that
satisfies the invariant).

Finally, define two primitive recursive functions%
\end{isamarkuptext}%
\isamarkuptrue%
\isacommand{consts}\ add\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequote}{\isacharparenleft}nat{\isacharasterisk}nat{\isacharparenright}\ {\isacharequal}{\isachargreater}\ intervals\ {\isacharequal}{\isachargreater}\ intervals{\isachardoublequote}\isanewline
\ \ \ \ \ \ \ rem\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequote}{\isacharparenleft}nat{\isacharasterisk}nat{\isacharparenright}\ {\isacharequal}{\isachargreater}\ intervals\ {\isacharequal}{\isachargreater}\ intervals{\isachardoublequote}\isamarkupfalse%
%
\begin{isamarkuptext}%
for inserting and deleting an interval from an interval
list. The result should again satisfies the invariant. Hence the name:
\isa{inv} is invariant under the application of the operations
\isa{add} and \isa{rem} --- if \isa{inv} holds for the input, it
must also hold for the output.%
\end{isamarkuptext}%
\isamarkuptrue%
%
\isamarkupsubsubsection{Proving the invariant%
}
\isamarkuptrue%
\isacommand{declare}\ Let{\isacharunderscore}def\ {\isacharbrackleft}simp{\isacharbrackright}\isanewline
\isamarkupfalse%
\isacommand{declare}\ split{\isacharunderscore}split\ {\isacharbrackleft}split{\isacharbrackright}\isamarkupfalse%
%
\begin{isamarkuptext}%
Start off by proving the monotonicity of \isa{inv{\isadigit{2}}}:%
\end{isamarkuptext}%
\isamarkuptrue%
\isacommand{lemma}\ inv{\isadigit{2}}{\isacharunderscore}monotone{\isacharcolon}\ {\isachardoublequote}inv{\isadigit{2}}\ m\ ins\ {\isasymLongrightarrow}\ n{\isasymle}m\ {\isasymLongrightarrow}\ inv{\isadigit{2}}\ n\ ins{\isachardoublequote}\isamarkupfalse%
\isamarkupfalse%
%
\begin{isamarkuptext}%
Now show that \isa{add} and \isa{rem} preserve the invariant:%
\end{isamarkuptext}%
\isamarkuptrue%
\isacommand{theorem}\ inv{\isacharunderscore}add{\isacharcolon}\ {\isachardoublequote}{\isasymlbrakk}\ i{\isasymle}j{\isacharsemicolon}\ inv\ ins\ {\isasymrbrakk}\ {\isasymLongrightarrow}\ inv\ {\isacharparenleft}add\ {\isacharparenleft}i{\isacharcomma}j{\isacharparenright}\ ins{\isacharparenright}{\isachardoublequote}\isamarkupfalse%
\isanewline
\isamarkupfalse%
\isacommand{theorem}\ inv{\isacharunderscore}rem{\isacharcolon}\ {\isachardoublequote}{\isasymlbrakk}\ i{\isasymle}j{\isacharsemicolon}\ inv\ ins\ {\isasymrbrakk}\ {\isasymLongrightarrow}\ inv\ {\isacharparenleft}rem\ {\isacharparenleft}i{\isacharcomma}j{\isacharparenright}\ ins{\isacharparenright}{\isachardoublequote}\isamarkupfalse%
\isamarkupfalse%
%
\begin{isamarkuptext}%
Hint: you should first prove a more general statement
(involving \isa{inv{\isadigit{2}}}). This will probably involve some advanced
forms of induction discussed in section~9.3.1 of
\cite{isabelle-tutorial}.%
\end{isamarkuptext}%
\isamarkuptrue%
%
\isamarkupsubsubsection{Proving correctness of the implementation%
}
\isamarkuptrue%
%
\begin{isamarkuptext}%
Show the correctness of \isa{add} and \isa{rem} wrt.\
their counterparts \isa{{\isasymunion}} and \isa{{\isacharminus}} on sets:%
\end{isamarkuptext}%
\isamarkuptrue%
\isacommand{theorem}\ set{\isacharunderscore}of{\isacharunderscore}add{\isacharcolon}\ \isanewline
\ \ {\isachardoublequote}{\isasymlbrakk}\ i{\isasymle}j{\isacharsemicolon}\ inv\ ins\ {\isasymrbrakk}\ {\isasymLongrightarrow}\ set{\isacharunderscore}of\ {\isacharparenleft}add\ {\isacharparenleft}i{\isacharcomma}j{\isacharparenright}\ ins{\isacharparenright}\ {\isacharequal}\ set{\isacharunderscore}of\ {\isacharbrackleft}{\isacharparenleft}i{\isacharcomma}j{\isacharparenright}{\isacharbrackright}\ {\isasymunion}\ set{\isacharunderscore}of\ ins{\isachardoublequote}\isamarkupfalse%
\isanewline
\isamarkupfalse%
\isacommand{theorem}\ set{\isacharunderscore}of{\isacharunderscore}rem{\isacharcolon}\isanewline
\ \ {\isachardoublequote}{\isasymlbrakk}\ i\ {\isasymle}\ j{\isacharsemicolon}\ inv\ ins\ {\isasymrbrakk}\ {\isasymLongrightarrow}\ set{\isacharunderscore}of\ {\isacharparenleft}rem\ {\isacharparenleft}i{\isacharcomma}j{\isacharparenright}\ ins{\isacharparenright}\ {\isacharequal}\ set{\isacharunderscore}of\ ins\ {\isacharminus}\ set{\isacharunderscore}of\ {\isacharbrackleft}{\isacharparenleft}i{\isacharcomma}j{\isacharparenright}{\isacharbrackright}{\isachardoublequote}\isamarkupfalse%
\isamarkupfalse%
%
\begin{isamarkuptext}%
Hints: in addition to the hints above, you may also find it
useful to prove some relationship between \isa{inv{\isadigit{2}}} and \isa{set{\isacharunderscore}of} as a lemma.%
\end{isamarkuptext}%
\isamarkuptrue%
%
\isamarkupsubsubsection{General hints%
}
\isamarkuptrue%
%
\begin{isamarkuptext}%
\begin{itemize}

\item You should be familiar both with simplification and predicate
calculus reasoning. Automatic tactics like \isa{blast} and \isa{force} can simplify the proof.

\item
Equality of two sets can often be proved via the rule \isa{set{\isacharunderscore}ext}:
\begin{isabelle}%
{\isacharparenleft}{\isasymAnd}x{\isachardot}\ {\isacharparenleft}x\ {\isasymin}\ A{\isacharparenright}\ {\isacharequal}\ {\isacharparenleft}x\ {\isasymin}\ B{\isacharparenright}{\isacharparenright}\ {\isasymLongrightarrow}\ A\ {\isacharequal}\ B%
\end{isabelle}

\item 
Potentially useful theorems for the simplification of sets include \\
\isa{Un{\isacharunderscore}Diff{\isacharcolon}}~\isa{A\ {\isasymunion}\ B\ {\isacharminus}\ C\ {\isacharequal}\ A\ {\isacharminus}\ C\ {\isasymunion}\ {\isacharparenleft}B\ {\isacharminus}\ C{\isacharparenright}} \\
\isa{Diff{\isacharunderscore}triv{\isacharcolon}}~\isa{A\ {\isasyminter}\ B\ {\isacharequal}\ {\isacharbraceleft}{\isacharbraceright}\ {\isasymLongrightarrow}\ A\ {\isacharminus}\ B\ {\isacharequal}\ A}.

\item 
Theorems can be instantiated and simplified via \isa{of} and
\isa{{\isacharbrackleft}simplified{\isacharbrackright}} (see \cite{isabelle-tutorial}).
\end{itemize}%
\end{isamarkuptext}%
\isamarkuptrue%
\isamarkupfalse%
\end{isabellebody}%
%%% Local Variables:
%%% mode: latex
%%% TeX-master: "root"
%%% End: