datatype_codegen now checks type of constructor.
(* Title: ZF/pair
ID: $Id$
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1992 University of Cambridge
Ordered pairs in Zermelo-Fraenkel Set Theory
*)
(** Lemmas for showing that <a,b> uniquely determines a and b **)
Goal "{a} = {b} <-> a=b";
by (resolve_tac [extension RS iff_trans] 1);
by (Blast_tac 1) ;
qed "singleton_eq_iff";
AddIffs [singleton_eq_iff];
Goal "{a,b} = {c,d} <-> (a=c & b=d) | (a=d & b=c)";
by (resolve_tac [extension RS iff_trans] 1);
by (Blast_tac 1) ;
qed "doubleton_eq_iff";
Goalw [Pair_def] "<a,b> = <c,d> <-> a=c & b=d";
by (simp_tac (simpset() addsimps [doubleton_eq_iff]) 1);
by (Blast_tac 1) ;
qed "Pair_iff";
Addsimps [Pair_iff];
bind_thm ("Pair_inject", Pair_iff RS iffD1 RS conjE);
AddSEs [Pair_inject];
bind_thm ("Pair_inject1", Pair_iff RS iffD1 RS conjunct1);
bind_thm ("Pair_inject2", Pair_iff RS iffD1 RS conjunct2);
Goalw [Pair_def] "<a,b> ~= 0";
by (blast_tac (claset() addEs [equalityE]) 1) ;
qed "Pair_not_0";
bind_thm ("Pair_neq_0", Pair_not_0 RS notE);
AddSEs [Pair_neq_0, sym RS Pair_neq_0];
Goalw [Pair_def] "<a,b>=a ==> P";
by (rtac (consI1 RS mem_asym RS FalseE) 1);
by (etac subst 1);
by (rtac consI1 1) ;
qed "Pair_neq_fst";
Goalw [Pair_def] "<a,b>=b ==> P";
by (rtac (consI1 RS consI2 RS mem_asym RS FalseE) 1);
by (etac subst 1);
by (rtac (consI1 RS consI2) 1) ;
qed "Pair_neq_snd";
(*** Sigma: Disjoint union of a family of sets
Generalizes Cartesian product ***)
Goalw [Sigma_def] "<a,b>: Sigma(A,B) <-> a:A & b:B(a)";
by (Blast_tac 1) ;
qed "Sigma_iff";
Addsimps [Sigma_iff];
Goal "[| a:A; b:B(a) |] ==> <a,b> : Sigma(A,B)";
by (Asm_simp_tac 1);
qed "SigmaI";
AddTCs [SigmaI];
bind_thm ("SigmaD1", Sigma_iff RS iffD1 RS conjunct1);
bind_thm ("SigmaD2", Sigma_iff RS iffD1 RS conjunct2);
(*The general elimination rule*)
val major::prems= Goalw [Sigma_def]
"[| c: Sigma(A,B); \
\ !!x y.[| x:A; y:B(x); c=<x,y> |] ==> P \
\ |] ==> P";
by (cut_facts_tac [major] 1);
by (REPEAT (eresolve_tac [UN_E, singletonE] 1 ORELSE ares_tac prems 1)) ;
qed "SigmaE";
val [major,minor]= Goal
"[| <a,b> : Sigma(A,B); \
\ [| a:A; b:B(a) |] ==> P \
\ |] ==> P";
by (rtac minor 1);
by (rtac (major RS SigmaD1) 1);
by (rtac (major RS SigmaD2) 1) ;
qed "SigmaE2";
val prems= Goalw [Sigma_def]
"[| A=A'; !!x. x:A' ==> B(x)=B'(x) |] ==> \
\ Sigma(A,B) = Sigma(A',B')";
by (simp_tac (simpset() addsimps prems) 1) ;
qed "Sigma_cong";
(*Sigma_cong, Pi_cong NOT given to Addcongs: they cause
flex-flex pairs and the "Check your prover" error. Most
Sigmas and Pis are abbreviated as * or -> *)
AddSIs [SigmaI];
AddSEs [SigmaE2, SigmaE];
Goal "Sigma(0,B) = 0";
by (Blast_tac 1) ;
qed "Sigma_empty1";
Goal "A*0 = 0";
by (Blast_tac 1) ;
qed "Sigma_empty2";
Addsimps [Sigma_empty1, Sigma_empty2];
Goal "A*B=0 <-> A=0 | B=0";
by (Blast_tac 1);
qed "Sigma_empty_iff";
(*** Projections: fst, snd ***)
Goalw [fst_def] "fst(<a,b>) = a";
by (Blast_tac 1) ;
qed "fst_conv";
Goalw [snd_def] "snd(<a,b>) = b";
by (Blast_tac 1) ;
qed "snd_conv";
Addsimps [fst_conv,snd_conv];
Goal "p:Sigma(A,B) ==> fst(p) : A";
by (Auto_tac) ;
qed "fst_type";
Goal "p:Sigma(A,B) ==> snd(p) : B(fst(p))";
by (Auto_tac) ;
qed "snd_type";
Goal "a: Sigma(A,B) ==> <fst(a),snd(a)> = a";
by (Auto_tac) ;
qed "Pair_fst_snd_eq";
(*** Eliminator - split ***)
(*A META-equality, so that it applies to higher types as well...*)
Goalw [split_def] "split(%x y. c(x,y), <a,b>) == c(a,b)";
by (Simp_tac 1);
qed "split";
Addsimps [split];
val major::prems= Goal
"[| p:Sigma(A,B); \
\ !!x y.[| x:A; y:B(x) |] ==> c(x,y):C(<x,y>) \
\ |] ==> split(%x y. c(x,y), p) : C(p)";
by (rtac (major RS SigmaE) 1);
by (asm_simp_tac (simpset() addsimps prems) 1);
qed "split_type";
AddTCs [split_type];
Goalw [split_def]
"u: A*B ==> \
\ R(split(c,u)) <-> (ALL x:A. ALL y:B. u = <x,y> --> R(c(x,y)))";
by Auto_tac;
qed "expand_split";
(*** split for predicates: result type o ***)
Goalw [split_def] "R(a,b) ==> split(R, <a,b>)";
by (Asm_simp_tac 1);
qed "splitI";
val major::sigma::prems = Goalw [split_def]
"[| split(R,z); z:Sigma(A,B); \
\ !!x y. [| z = <x,y>; R(x,y) |] ==> P \
\ |] ==> P";
by (rtac (sigma RS SigmaE) 1);
by (cut_facts_tac [major] 1);
by (REPEAT (ares_tac prems 1));
by (Asm_full_simp_tac 1);
qed "splitE";
Goalw [split_def] "split(R,<a,b>) ==> R(a,b)";
by (Full_simp_tac 1);
qed "splitD";