(* Title: Pure/Proof/proof_checker.ML
Author: Stefan Berghofer, TU Muenchen
Simple proof checker based only on the core inference rules
of Isabelle/Pure.
*)
signature PROOF_CHECKER =
sig
val thm_of_proof : theory -> Proofterm.proof -> thm
end;
structure Proof_Checker : PROOF_CHECKER =
struct
(***** construct a theorem out of a proof term *****)
fun lookup_thm thy =
let val tab = fold_rev Symtab.update (Global_Theory.all_thms_of thy true) Symtab.empty in
fn s =>
(case Symtab.lookup tab s of
NONE => error ("Unknown theorem " ^ quote s)
| SOME thm => thm)
end;
val beta_eta_convert =
Conv.fconv_rule Drule.beta_eta_conversion;
(* equality modulo renaming of type variables *)
fun is_equal t t' =
let
val atoms = fold_types (fold_atyps (insert (op =))) t [];
val atoms' = fold_types (fold_atyps (insert (op =))) t' []
in
length atoms = length atoms' andalso
map_types (map_atyps (the o AList.lookup (op =) (atoms ~~ atoms'))) t aconv t'
end;
fun pretty_prf thy vs Hs prf =
let val prf' = prf |> Proofterm.prf_subst_bounds (map Free vs) |>
Proofterm.prf_subst_pbounds (map (Hyp o Thm.prop_of) Hs)
in
(Proof_Syntax.pretty_proof (Syntax.init_pretty_global thy) prf',
Syntax.pretty_term_global thy (Reconstruct.prop_of prf'))
end;
fun pretty_term thy vs _ t =
let val t' = subst_bounds (map Free vs, t)
in
(Syntax.pretty_term_global thy t',
Syntax.pretty_typ_global thy (fastype_of t'))
end;
fun appl_error thy prt vs Hs s f a =
let
val (pp_f, pp_fT) = pretty_prf thy vs Hs f;
val (pp_a, pp_aT) = prt thy vs Hs a
in
error (cat_lines
[s,
"",
Pretty.string_of (Pretty.block
[Pretty.str "Operator:", Pretty.brk 2, pp_f,
Pretty.str " ::", Pretty.brk 1, pp_fT]),
Pretty.string_of (Pretty.block
[Pretty.str "Operand:", Pretty.brk 3, pp_a,
Pretty.str " ::", Pretty.brk 1, pp_aT]),
""])
end;
fun thm_of_proof thy =
let val lookup = lookup_thm thy in
fn prf =>
let
val prf_names = Proofterm.fold_proof_terms Term.declare_term_frees (K I) prf Name.context;
fun thm_of_atom thm Ts =
let
val tvars = Term.add_tvars (Thm.full_prop_of thm) [] |> rev;
val (fmap, thm') = Thm.varifyT_global' [] thm;
val ctye =
(tvars @ map (fn ((_, S), ixn) => (ixn, S)) fmap ~~ map (Thm.global_ctyp_of thy) Ts);
in
Thm.instantiate (ctye, []) (forall_intr_vars (Thm.forall_intr_frees thm'))
end;
fun thm_of _ _ (PThm (_, ((name, prop', SOME Ts), _))) =
let
val thm = Thm.unconstrainT (Drule.implies_intr_hyps (lookup name));
val prop = Thm.prop_of thm;
val _ =
if is_equal prop prop' then ()
else
error ("Duplicate use of theorem name " ^ quote name ^ "\n" ^
Syntax.string_of_term_global thy prop ^ "\n\n" ^
Syntax.string_of_term_global thy prop');
in thm_of_atom thm Ts end
| thm_of _ _ (PAxm (name, _, SOME Ts)) =
thm_of_atom (Thm.axiom thy name) Ts
| thm_of _ Hs (PBound i) = nth Hs i
| thm_of (vs, names) Hs (Abst (s, SOME T, prf)) =
let
val (x, names') = Name.variant s names;
val thm = thm_of ((x, T) :: vs, names') Hs prf
in
Thm.forall_intr (Thm.global_cterm_of thy (Free (x, T))) thm
end
| thm_of (vs, names) Hs (prf % SOME t) =
let
val thm = thm_of (vs, names) Hs prf;
val ct = Thm.global_cterm_of thy (Term.subst_bounds (map Free vs, t));
in
Thm.forall_elim ct thm
handle THM (s, _, _) => appl_error thy pretty_term vs Hs s prf t
end
| thm_of (vs, names) Hs (AbsP (_, SOME t, prf)) =
let
val ct = Thm.global_cterm_of thy (Term.subst_bounds (map Free vs, t));
val thm = thm_of (vs, names) (Thm.assume ct :: Hs) prf;
in
Thm.implies_intr ct thm
end
| thm_of vars Hs (prf %% prf') =
let
val thm = beta_eta_convert (thm_of vars Hs prf);
val thm' = beta_eta_convert (thm_of vars Hs prf');
in
Thm.implies_elim thm thm'
handle THM (s, _, _) => appl_error thy pretty_prf (fst vars) Hs s prf prf'
end
| thm_of _ _ (Hyp t) = Thm.assume (Thm.global_cterm_of thy t)
| thm_of _ _ _ = error "thm_of_proof: partial proof term";
in beta_eta_convert (thm_of ([], prf_names) [] prf) end
end;
end;