added ignored_consts, thms_containing, add_store_axioms(_i),
add_store_defs(_i), thms_of;
tuned pure thys;
(* Title: ZF/AC.thy
ID: $Id$
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1994 University of Cambridge
The Axiom of Choice
This definition comes from Halmos (1960), page 59.
*)
AC = func +
rules
AC "[| a: A; !!x. x:A ==> (EX y. y:B(x)) |] ==> EX z. z : Pi(A,B)"
end