(* Title: HOL/Auth/Message
ID: $Id$
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1996 University of Cambridge
Datatypes of agents and messages;
Inductive relations "parts", "analz" and "synth"
*)
(*ML bindings for definitions and axioms*)
val invKey = thm "invKey";
val keysFor_def = thm "keysFor_def";
val parts_mono = thm "parts_mono";
val analz_mono = thm "analz_mono";
val synth_mono = thm "synth_mono";
val HPair_def = thm "HPair_def";
val symKeys_def = thm "symKeys_def";
structure parts =
struct
val induct = thm "parts.induct";
val Inj = thm "parts.Inj";
val Fst = thm "parts.Fst";
val Snd = thm "parts.Snd";
val Body = thm "parts.Body";
end;
structure analz =
struct
val induct = thm "analz.induct";
val Inj = thm "analz.Inj";
val Fst = thm "analz.Fst";
val Snd = thm "analz.Snd";
val Decrypt = thm "analz.Decrypt";
end;
structure synth =
struct
val induct = thm "synth.induct";
val Inj = thm "synth.Inj";
val Agent = thm "synth.Agent";
val Number = thm "synth.Number";
val Hash = thm "synth.Hash";
val Crypt = thm "synth.Crypt";
end;
(*Equations hold because constructors are injective; cannot prove for all f*)
Goal "(Friend x \\<in> Friend`A) = (x:A)";
by Auto_tac;
qed "Friend_image_eq";
Goal "(Key x \\<in> Key`A) = (x\\<in>A)";
by Auto_tac;
qed "Key_image_eq";
Goal "(Nonce x \\<notin> Key`A)";
by Auto_tac;
qed "Nonce_Key_image_eq";
Addsimps [Friend_image_eq, Key_image_eq, Nonce_Key_image_eq];
(** Inverse of keys **)
Goal "(invKey K = invKey K') = (K=K')";
by Safe_tac;
by (rtac box_equals 1);
by (REPEAT (rtac invKey 2));
by (Asm_simp_tac 1);
qed "invKey_eq";
Addsimps [invKey_eq];
(**** keysFor operator ****)
Goalw [keysFor_def] "keysFor {} = {}";
by (Blast_tac 1);
qed "keysFor_empty";
Goalw [keysFor_def] "keysFor (H Un H') = keysFor H Un keysFor H'";
by (Blast_tac 1);
qed "keysFor_Un";
Goalw [keysFor_def] "keysFor (\\<Union>i\\<in>A. H i) = (\\<Union>i\\<in>A. keysFor (H i))";
by (Blast_tac 1);
qed "keysFor_UN";
(*Monotonicity*)
Goalw [keysFor_def] "G\\<subseteq>H ==> keysFor(G) \\<subseteq> keysFor(H)";
by (Blast_tac 1);
qed "keysFor_mono";
Goalw [keysFor_def] "keysFor (insert (Agent A) H) = keysFor H";
by Auto_tac;
qed "keysFor_insert_Agent";
Goalw [keysFor_def] "keysFor (insert (Nonce N) H) = keysFor H";
by Auto_tac;
qed "keysFor_insert_Nonce";
Goalw [keysFor_def] "keysFor (insert (Number N) H) = keysFor H";
by Auto_tac;
qed "keysFor_insert_Number";
Goalw [keysFor_def] "keysFor (insert (Key K) H) = keysFor H";
by Auto_tac;
qed "keysFor_insert_Key";
Goalw [keysFor_def] "keysFor (insert (Hash X) H) = keysFor H";
by Auto_tac;
qed "keysFor_insert_Hash";
Goalw [keysFor_def] "keysFor (insert {|X,Y|} H) = keysFor H";
by Auto_tac;
qed "keysFor_insert_MPair";
Goalw [keysFor_def]
"keysFor (insert (Crypt K X) H) = insert (invKey K) (keysFor H)";
by Auto_tac;
qed "keysFor_insert_Crypt";
Addsimps [keysFor_empty, keysFor_Un, keysFor_UN,
keysFor_insert_Agent, keysFor_insert_Nonce,
keysFor_insert_Number, keysFor_insert_Key,
keysFor_insert_Hash, keysFor_insert_MPair, keysFor_insert_Crypt];
AddSEs [keysFor_Un RS equalityD1 RS subsetD RS UnE,
keysFor_UN RS equalityD1 RS subsetD RS UN_E];
Goalw [keysFor_def] "keysFor (Key`E) = {}";
by Auto_tac;
qed "keysFor_image_Key";
Addsimps [keysFor_image_Key];
Goalw [keysFor_def] "Crypt K X \\<in> H ==> invKey K \\<in> keysFor H";
by (Blast_tac 1);
qed "Crypt_imp_invKey_keysFor";
(**** Inductive relation "parts" ****)
val major::prems =
Goal "[| {|X,Y|} \\<in> parts H; \
\ [| X \\<in> parts H; Y \\<in> parts H |] ==> P \
\ |] ==> P";
by (cut_facts_tac [major] 1);
by (resolve_tac prems 1);
by (REPEAT (eresolve_tac [asm_rl, parts.Fst, parts.Snd] 1));
qed "MPair_parts";
AddSEs [MPair_parts, make_elim parts.Body];
(*NB These two rules are UNSAFE in the formal sense, as they discard the
compound message. They work well on THIS FILE.
MPair_parts is left as SAFE because it speeds up proofs.
The Crypt rule is normally kept UNSAFE to avoid breaking up certificates.*)
Goal "H \\<subseteq> parts(H)";
by (Blast_tac 1);
qed "parts_increasing";
val parts_insertI = impOfSubs (subset_insertI RS parts_mono);
Goal "parts{} = {}";
by Safe_tac;
by (etac parts.induct 1);
by (ALLGOALS Blast_tac);
qed "parts_empty";
Addsimps [parts_empty];
Goal "X\\<in> parts{} ==> P";
by (Asm_full_simp_tac 1);
qed "parts_emptyE";
AddSEs [parts_emptyE];
(*WARNING: loops if H = {Y}, therefore must not be repeated!*)
Goal "X\\<in> parts H ==> \\<exists>Y\\<in>H. X\\<in> parts {Y}";
by (etac parts.induct 1);
by (ALLGOALS Blast_tac);
qed "parts_singleton";
(** Unions **)
Goal "parts(G) Un parts(H) \\<subseteq> parts(G Un H)";
by (REPEAT (ares_tac [Un_least, parts_mono, Un_upper1, Un_upper2] 1));
val parts_Un_subset1 = result();
Goal "parts(G Un H) \\<subseteq> parts(G) Un parts(H)";
by (rtac subsetI 1);
by (etac parts.induct 1);
by (ALLGOALS Blast_tac);
val parts_Un_subset2 = result();
Goal "parts(G Un H) = parts(G) Un parts(H)";
by (REPEAT (ares_tac [equalityI, parts_Un_subset1, parts_Un_subset2] 1));
qed "parts_Un";
Goal "parts (insert X H) = parts {X} Un parts H";
by (stac (read_instantiate [("A","H")] insert_is_Un) 1);
by (simp_tac (HOL_ss addsimps [parts_Un]) 1);
qed "parts_insert";
(*TWO inserts to avoid looping. This rewrite is better than nothing.
Not suitable for Addsimps: its behaviour can be strange.*)
Goal "parts (insert X (insert Y H)) = parts {X} Un parts {Y} Un parts H";
by (simp_tac (simpset() addsimps [Un_assoc]) 1);
by (simp_tac (simpset() addsimps [parts_insert RS sym]) 1);
qed "parts_insert2";
Goal "(\\<Union>x\\<in>A. parts(H x)) \\<subseteq> parts(\\<Union>x\\<in>A. H x)";
by (REPEAT (ares_tac [UN_least, parts_mono, UN_upper] 1));
val parts_UN_subset1 = result();
Goal "parts(\\<Union>x\\<in>A. H x) \\<subseteq> (\\<Union>x\\<in>A. parts(H x))";
by (rtac subsetI 1);
by (etac parts.induct 1);
by (ALLGOALS Blast_tac);
val parts_UN_subset2 = result();
Goal "parts(\\<Union>x\\<in>A. H x) = (\\<Union>x\\<in>A. parts(H x))";
by (REPEAT (ares_tac [equalityI, parts_UN_subset1, parts_UN_subset2] 1));
qed "parts_UN";
(*Added to simplify arguments to parts, analz and synth.
NOTE: the UN versions are no longer used!*)
Addsimps [parts_Un, parts_UN];
AddSEs [parts_Un RS equalityD1 RS subsetD RS UnE,
parts_UN RS equalityD1 RS subsetD RS UN_E];
Goal "insert X (parts H) \\<subseteq> parts(insert X H)";
by (blast_tac (claset() addIs [impOfSubs parts_mono]) 1);
qed "parts_insert_subset";
(** Idempotence and transitivity **)
Goal "X\\<in> parts (parts H) ==> X\\<in> parts H";
by (etac parts.induct 1);
by (ALLGOALS Blast_tac);
qed "parts_partsD";
AddSDs [parts_partsD];
Goal "parts (parts H) = parts H";
by (Blast_tac 1);
qed "parts_idem";
Addsimps [parts_idem];
Goal "[| X\\<in> parts G; G \\<subseteq> parts H |] ==> X\\<in> parts H";
by (dtac parts_mono 1);
by (Blast_tac 1);
qed "parts_trans";
(*Cut*)
Goal "[| Y\\<in> parts (insert X G); X\\<in> parts H |] \
\ ==> Y\\<in> parts (G Un H)";
by (etac parts_trans 1);
by Auto_tac;
qed "parts_cut";
Goal "X\\<in> parts H ==> parts (insert X H) = parts H";
by (fast_tac (claset() addSDs [parts_cut]
addIs [parts_insertI]
addss (simpset())) 1);
qed "parts_cut_eq";
Addsimps [parts_cut_eq];
(** Rewrite rules for pulling out atomic messages **)
fun parts_tac i =
EVERY [rtac ([subsetI, parts_insert_subset] MRS equalityI) i,
etac parts.induct i,
Auto_tac];
Goal "parts (insert (Agent agt) H) = insert (Agent agt) (parts H)";
by (parts_tac 1);
qed "parts_insert_Agent";
Goal "parts (insert (Nonce N) H) = insert (Nonce N) (parts H)";
by (parts_tac 1);
qed "parts_insert_Nonce";
Goal "parts (insert (Number N) H) = insert (Number N) (parts H)";
by (parts_tac 1);
qed "parts_insert_Number";
Goal "parts (insert (Key K) H) = insert (Key K) (parts H)";
by (parts_tac 1);
qed "parts_insert_Key";
Goal "parts (insert (Hash X) H) = insert (Hash X) (parts H)";
by (parts_tac 1);
qed "parts_insert_Hash";
Goal "parts (insert (Crypt K X) H) = \
\ insert (Crypt K X) (parts (insert X H))";
by (rtac equalityI 1);
by (rtac subsetI 1);
by (etac parts.induct 1);
by Auto_tac;
by (etac parts.induct 1);
by (ALLGOALS (blast_tac (claset() addIs [parts.Body])));
qed "parts_insert_Crypt";
Goal "parts (insert {|X,Y|} H) = \
\ insert {|X,Y|} (parts (insert X (insert Y H)))";
by (rtac equalityI 1);
by (rtac subsetI 1);
by (etac parts.induct 1);
by Auto_tac;
by (etac parts.induct 1);
by (ALLGOALS (blast_tac (claset() addIs [parts.Fst, parts.Snd])));
qed "parts_insert_MPair";
Addsimps [parts_insert_Agent, parts_insert_Nonce,
parts_insert_Number, parts_insert_Key,
parts_insert_Hash, parts_insert_Crypt, parts_insert_MPair];
Goal "parts (Key`N) = Key`N";
by Auto_tac;
by (etac parts.induct 1);
by Auto_tac;
qed "parts_image_Key";
Addsimps [parts_image_Key];
(*In any message, there is an upper bound N on its greatest nonce.*)
Goal "\\<exists>N. \\<forall>n. N\\<le>n --> Nonce n \\<notin> parts {msg}";
by (induct_tac "msg" 1);
by (ALLGOALS (asm_simp_tac (simpset() addsimps [exI, parts_insert2])));
(*MPair case: blast_tac works out the necessary sum itself!*)
by (blast_tac (claset() addSEs [add_leE]) 2);
(*Nonce case*)
by (res_inst_tac [("x","N + Suc nat")] exI 1);
by (auto_tac (claset() addSEs [add_leE], simpset()));
qed "msg_Nonce_supply";
(**** Inductive relation "analz" ****)
val major::prems =
Goal "[| {|X,Y|} \\<in> analz H; \
\ [| X \\<in> analz H; Y \\<in> analz H |] ==> P \
\ |] ==> P";
by (cut_facts_tac [major] 1);
by (resolve_tac prems 1);
by (REPEAT (eresolve_tac [asm_rl, analz.Fst, analz.Snd] 1));
qed "MPair_analz";
AddSEs [MPair_analz]; (*Making it safe speeds up proofs*)
Goal "H \\<subseteq> analz(H)";
by (Blast_tac 1);
qed "analz_increasing";
Goal "analz H \\<subseteq> parts H";
by (rtac subsetI 1);
by (etac analz.induct 1);
by (ALLGOALS Blast_tac);
qed "analz_subset_parts";
bind_thm ("not_parts_not_analz", analz_subset_parts RS contra_subsetD);
Goal "parts (analz H) = parts H";
by (rtac equalityI 1);
by (rtac (analz_subset_parts RS parts_mono RS subset_trans) 1);
by (Simp_tac 1);
by (blast_tac (claset() addIs [analz_increasing RS parts_mono RS subsetD]) 1);
qed "parts_analz";
Addsimps [parts_analz];
Goal "analz (parts H) = parts H";
by Auto_tac;
by (etac analz.induct 1);
by Auto_tac;
qed "analz_parts";
Addsimps [analz_parts];
bind_thm ("analz_insertI", impOfSubs (subset_insertI RS analz_mono));
(** General equational properties **)
Goal "analz{} = {}";
by Safe_tac;
by (etac analz.induct 1);
by (ALLGOALS Blast_tac);
qed "analz_empty";
Addsimps [analz_empty];
(*Converse fails: we can analz more from the union than from the
separate parts, as a key in one might decrypt a message in the other*)
Goal "analz(G) Un analz(H) \\<subseteq> analz(G Un H)";
by (REPEAT (ares_tac [Un_least, analz_mono, Un_upper1, Un_upper2] 1));
qed "analz_Un";
Goal "insert X (analz H) \\<subseteq> analz(insert X H)";
by (blast_tac (claset() addIs [impOfSubs analz_mono]) 1);
qed "analz_insert";
(** Rewrite rules for pulling out atomic messages **)
fun analz_tac i =
EVERY [rtac ([subsetI, analz_insert] MRS equalityI) i,
etac analz.induct i,
Auto_tac];
Goal "analz (insert (Agent agt) H) = insert (Agent agt) (analz H)";
by (analz_tac 1);
qed "analz_insert_Agent";
Goal "analz (insert (Nonce N) H) = insert (Nonce N) (analz H)";
by (analz_tac 1);
qed "analz_insert_Nonce";
Goal "analz (insert (Number N) H) = insert (Number N) (analz H)";
by (analz_tac 1);
qed "analz_insert_Number";
Goal "analz (insert (Hash X) H) = insert (Hash X) (analz H)";
by (analz_tac 1);
qed "analz_insert_Hash";
(*Can only pull out Keys if they are not needed to decrypt the rest*)
Goalw [keysFor_def]
"K \\<notin> keysFor (analz H) ==> \
\ analz (insert (Key K) H) = insert (Key K) (analz H)";
by (analz_tac 1);
qed "analz_insert_Key";
Goal "analz (insert {|X,Y|} H) = \
\ insert {|X,Y|} (analz (insert X (insert Y H)))";
by (rtac equalityI 1);
by (rtac subsetI 1);
by (etac analz.induct 1);
by Auto_tac;
by (etac analz.induct 1);
by (ALLGOALS (blast_tac (claset() addIs [analz.Fst, analz.Snd])));
qed "analz_insert_MPair";
(*Can pull out enCrypted message if the Key is not known*)
Goal "Key (invKey K) \\<notin> analz H ==> \
\ analz (insert (Crypt K X) H) = \
\ insert (Crypt K X) (analz H)";
by (analz_tac 1);
qed "analz_insert_Crypt";
Goal "Key (invKey K) \\<in> analz H ==> \
\ analz (insert (Crypt K X) H) \\<subseteq> \
\ insert (Crypt K X) (analz (insert X H))";
by (rtac subsetI 1);
by (eres_inst_tac [("xa","x")] analz.induct 1);
by Auto_tac;
val lemma1 = result();
Goal "Key (invKey K) \\<in> analz H ==> \
\ insert (Crypt K X) (analz (insert X H)) \\<subseteq> \
\ analz (insert (Crypt K X) H)";
by Auto_tac;
by (eres_inst_tac [("xa","x")] analz.induct 1);
by Auto_tac;
by (blast_tac (claset() addIs [analz_insertI, analz.Decrypt]) 1);
val lemma2 = result();
Goal "Key (invKey K) \\<in> analz H ==> \
\ analz (insert (Crypt K X) H) = \
\ insert (Crypt K X) (analz (insert X H))";
by (REPEAT (ares_tac [equalityI, lemma1, lemma2] 1));
qed "analz_insert_Decrypt";
(*Case analysis: either the message is secure, or it is not!
Effective, but can cause subgoals to blow up!
Use with split_if; apparently split_tac does not cope with patterns
such as "analz (insert (Crypt K X) H)" *)
Goal "analz (insert (Crypt K X) H) = \
\ (if (Key (invKey K) \\<in> analz H) \
\ then insert (Crypt K X) (analz (insert X H)) \
\ else insert (Crypt K X) (analz H))";
by (case_tac "Key (invKey K) \\<in> analz H " 1);
by (ALLGOALS (asm_simp_tac (simpset() addsimps [analz_insert_Crypt,
analz_insert_Decrypt])));
qed "analz_Crypt_if";
Addsimps [analz_insert_Agent, analz_insert_Nonce,
analz_insert_Number, analz_insert_Key,
analz_insert_Hash, analz_insert_MPair, analz_Crypt_if];
(*This rule supposes "for the sake of argument" that we have the key.*)
Goal "analz (insert (Crypt K X) H) \\<subseteq> \
\ insert (Crypt K X) (analz (insert X H))";
by (rtac subsetI 1);
by (etac analz.induct 1);
by Auto_tac;
qed "analz_insert_Crypt_subset";
Goal "analz (Key`N) = Key`N";
by Auto_tac;
by (etac analz.induct 1);
by Auto_tac;
qed "analz_image_Key";
Addsimps [analz_image_Key];
(** Idempotence and transitivity **)
Goal "X\\<in> analz (analz H) ==> X\\<in> analz H";
by (etac analz.induct 1);
by (ALLGOALS Blast_tac);
qed "analz_analzD";
AddSDs [analz_analzD];
Goal "analz (analz H) = analz H";
by (Blast_tac 1);
qed "analz_idem";
Addsimps [analz_idem];
Goal "[| X\\<in> analz G; G \\<subseteq> analz H |] ==> X\\<in> analz H";
by (dtac analz_mono 1);
by (Blast_tac 1);
qed "analz_trans";
(*Cut; Lemma 2 of Lowe*)
Goal "[| Y\\<in> analz (insert X H); X\\<in> analz H |] ==> Y\\<in> analz H";
by (etac analz_trans 1);
by (Blast_tac 1);
qed "analz_cut";
(*Cut can be proved easily by induction on
"Y: analz (insert X H) ==> X: analz H --> Y: analz H"
*)
(*This rewrite rule helps in the simplification of messages that involve
the forwarding of unknown components (X). Without it, removing occurrences
of X can be very complicated. *)
Goal "X\\<in> analz H ==> analz (insert X H) = analz H";
by (blast_tac (claset() addIs [analz_cut, analz_insertI]) 1);
qed "analz_insert_eq";
(** A congruence rule for "analz" **)
Goal "[| analz G \\<subseteq> analz G'; analz H \\<subseteq> analz H' \
\ |] ==> analz (G Un H) \\<subseteq> analz (G' Un H')";
by (Clarify_tac 1);
by (etac analz.induct 1);
by (ALLGOALS (best_tac (claset() addIs [analz_mono RS subsetD])));
qed "analz_subset_cong";
Goal "[| analz G = analz G'; analz H = analz H' \
\ |] ==> analz (G Un H) = analz (G' Un H')";
by (REPEAT_FIRST (ares_tac [equalityI, analz_subset_cong]
ORELSE' etac equalityE));
qed "analz_cong";
Goal "analz H = analz H' ==> analz(insert X H) = analz(insert X H')";
by (asm_simp_tac (simpset() addsimps [insert_def] delsimps [singleton_conv]
setloop (rtac analz_cong)) 1);
qed "analz_insert_cong";
(*If there are no pairs or encryptions then analz does nothing*)
Goal "[| \\<forall>X Y. {|X,Y|} \\<notin> H; \\<forall>X K. Crypt K X \\<notin> H |] ==> analz H = H";
by Safe_tac;
by (etac analz.induct 1);
by (ALLGOALS Blast_tac);
qed "analz_trivial";
(*These two are obsolete (with a single Spy) but cost little to prove...*)
Goal "X\\<in> analz (\\<Union>i\\<in>A. analz (H i)) ==> X\\<in> analz (\\<Union>i\\<in>A. H i)";
by (etac analz.induct 1);
by (ALLGOALS (blast_tac (claset() addIs [impOfSubs analz_mono])));
val lemma = result();
Goal "analz (\\<Union>i\\<in>A. analz (H i)) = analz (\\<Union>i\\<in>A. H i)";
by (blast_tac (claset() addIs [lemma, impOfSubs analz_mono]) 1);
qed "analz_UN_analz";
Addsimps [analz_UN_analz];
(**** Inductive relation "synth" ****)
Goal "H \\<subseteq> synth(H)";
by (Blast_tac 1);
qed "synth_increasing";
(** Unions **)
(*Converse fails: we can synth more from the union than from the
separate parts, building a compound message using elements of each.*)
Goal "synth(G) Un synth(H) \\<subseteq> synth(G Un H)";
by (REPEAT (ares_tac [Un_least, synth_mono, Un_upper1, Un_upper2] 1));
qed "synth_Un";
Goal "insert X (synth H) \\<subseteq> synth(insert X H)";
by (blast_tac (claset() addIs [impOfSubs synth_mono]) 1);
qed "synth_insert";
(** Idempotence and transitivity **)
Goal "X\\<in> synth (synth H) ==> X\\<in> synth H";
by (etac synth.induct 1);
by (ALLGOALS Blast_tac);
qed "synth_synthD";
AddSDs [synth_synthD];
Goal "synth (synth H) = synth H";
by (Blast_tac 1);
qed "synth_idem";
Goal "[| X\\<in> synth G; G \\<subseteq> synth H |] ==> X\\<in> synth H";
by (dtac synth_mono 1);
by (Blast_tac 1);
qed "synth_trans";
(*Cut; Lemma 2 of Lowe*)
Goal "[| Y\\<in> synth (insert X H); X\\<in> synth H |] ==> Y\\<in> synth H";
by (etac synth_trans 1);
by (Blast_tac 1);
qed "synth_cut";
Goal "Agent A \\<in> synth H";
by (Blast_tac 1);
qed "Agent_synth";
Goal "Number n \\<in> synth H";
by (Blast_tac 1);
qed "Number_synth";
Goal "(Nonce N \\<in> synth H) = (Nonce N \\<in> H)";
by (Blast_tac 1);
qed "Nonce_synth_eq";
Goal "(Key K \\<in> synth H) = (Key K \\<in> H)";
by (Blast_tac 1);
qed "Key_synth_eq";
Goal "Key K \\<notin> H ==> (Crypt K X \\<in> synth H) = (Crypt K X \\<in> H)";
by (Blast_tac 1);
qed "Crypt_synth_eq";
Addsimps [Agent_synth, Number_synth,
Nonce_synth_eq, Key_synth_eq, Crypt_synth_eq];
Goalw [keysFor_def]
"keysFor (synth H) = keysFor H Un invKey`{K. Key K \\<in> H}";
by (Blast_tac 1);
qed "keysFor_synth";
Addsimps [keysFor_synth];
(*** Combinations of parts, analz and synth ***)
Goal "parts (synth H) = parts H Un synth H";
by (rtac equalityI 1);
by (rtac subsetI 1);
by (etac parts.induct 1);
by (ALLGOALS
(blast_tac (claset() addIs [synth_increasing RS parts_mono RS subsetD,
parts.Fst, parts.Snd, parts.Body])));
qed "parts_synth";
Addsimps [parts_synth];
Goal "analz (analz G Un H) = analz (G Un H)";
by (REPEAT_FIRST (resolve_tac [equalityI, analz_subset_cong]));
by (ALLGOALS Simp_tac);
qed "analz_analz_Un";
Goal "analz (synth G Un H) = analz (G Un H) Un synth G";
by (rtac equalityI 1);
by (rtac subsetI 1);
by (etac analz.induct 1);
by (blast_tac (claset() addIs [impOfSubs analz_mono]) 5);
by (ALLGOALS
(blast_tac (claset() addIs [analz.Fst, analz.Snd, analz.Decrypt])));
qed "analz_synth_Un";
Goal "analz (synth H) = analz H Un synth H";
by (cut_inst_tac [("H","{}")] analz_synth_Un 1);
by (Full_simp_tac 1);
qed "analz_synth";
Addsimps [analz_analz_Un, analz_synth_Un, analz_synth];
(** For reasoning about the Fake rule in traces **)
Goal "X\\<in> G ==> parts(insert X H) \\<subseteq> parts G Un parts H";
by (rtac ([parts_mono, parts_Un_subset2] MRS subset_trans) 1);
by (Blast_tac 1);
qed "parts_insert_subset_Un";
(*More specifically for Fake. Very occasionally we could do with a version
of the form parts{X} \\<subseteq> synth (analz H) Un parts H *)
Goal "X\\<in> synth (analz H) ==> \
\ parts (insert X H) \\<subseteq> synth (analz H) Un parts H";
by (dtac parts_insert_subset_Un 1);
by (Full_simp_tac 1);
by (Blast_tac 1);
qed "Fake_parts_insert";
(*H is sometimes (Key ` KK Un spies evs), so can't put G=H*)
Goal "X\\<in> synth (analz G) ==> \
\ analz (insert X H) \\<subseteq> synth (analz G) Un analz (G Un H)";
by (rtac subsetI 1);
by (subgoal_tac "x \\<in> analz (synth (analz G) Un H)" 1);
by (blast_tac (claset() addIs [impOfSubs analz_mono,
impOfSubs (analz_mono RS synth_mono)]) 2);
by (Full_simp_tac 1);
by (Blast_tac 1);
qed "Fake_analz_insert";
Goal "(X\\<in> analz H & X\\<in> parts H) = (X\\<in> analz H)";
by (blast_tac (claset() addIs [impOfSubs analz_subset_parts]) 1);
val analz_conj_parts = result();
Goal "(X\\<in> analz H | X\\<in> parts H) = (X\\<in> parts H)";
by (blast_tac (claset() addIs [impOfSubs analz_subset_parts]) 1);
val analz_disj_parts = result();
AddIffs [analz_conj_parts, analz_disj_parts];
(*Without this equation, other rules for synth and analz would yield
redundant cases*)
Goal "({|X,Y|} \\<in> synth (analz H)) = \
\ (X \\<in> synth (analz H) & Y \\<in> synth (analz H))";
by (Blast_tac 1);
qed "MPair_synth_analz";
AddIffs [MPair_synth_analz];
Goal "[| Key K \\<in> analz H; Key (invKey K) \\<in> analz H |] \
\ ==> (Crypt K X \\<in> synth (analz H)) = (X \\<in> synth (analz H))";
by (Blast_tac 1);
qed "Crypt_synth_analz";
Goal "X \\<notin> synth (analz H) \
\ ==> (Hash{|X,Y|} \\<in> synth (analz H)) = (Hash{|X,Y|} \\<in> analz H)";
by (Blast_tac 1);
qed "Hash_synth_analz";
Addsimps [Hash_synth_analz];
(**** HPair: a combination of Hash and MPair ****)
(*** Freeness ***)
Goalw [HPair_def] "Agent A ~= Hash[X] Y";
by (Simp_tac 1);
qed "Agent_neq_HPair";
Goalw [HPair_def] "Nonce N ~= Hash[X] Y";
by (Simp_tac 1);
qed "Nonce_neq_HPair";
Goalw [HPair_def] "Number N ~= Hash[X] Y";
by (Simp_tac 1);
qed "Number_neq_HPair";
Goalw [HPair_def] "Key K ~= Hash[X] Y";
by (Simp_tac 1);
qed "Key_neq_HPair";
Goalw [HPair_def] "Hash Z ~= Hash[X] Y";
by (Simp_tac 1);
qed "Hash_neq_HPair";
Goalw [HPair_def] "Crypt K X' ~= Hash[X] Y";
by (Simp_tac 1);
qed "Crypt_neq_HPair";
val HPair_neqs = [Agent_neq_HPair, Nonce_neq_HPair, Number_neq_HPair,
Key_neq_HPair, Hash_neq_HPair, Crypt_neq_HPair];
AddIffs HPair_neqs;
AddIffs (HPair_neqs RL [not_sym]);
Goalw [HPair_def] "(Hash[X'] Y' = Hash[X] Y) = (X' = X & Y'=Y)";
by (Simp_tac 1);
qed "HPair_eq";
Goalw [HPair_def] "({|X',Y'|} = Hash[X] Y) = (X' = Hash{|X,Y|} & Y'=Y)";
by (Simp_tac 1);
qed "MPair_eq_HPair";
Goalw [HPair_def] "(Hash[X] Y = {|X',Y'|}) = (X' = Hash{|X,Y|} & Y'=Y)";
by Auto_tac;
qed "HPair_eq_MPair";
AddIffs [HPair_eq, MPair_eq_HPair, HPair_eq_MPair];
(*** Specialized laws, proved in terms of those for Hash and MPair ***)
Goalw [HPair_def] "keysFor (insert (Hash[X] Y) H) = keysFor H";
by (Simp_tac 1);
qed "keysFor_insert_HPair";
Goalw [HPair_def]
"parts (insert (Hash[X] Y) H) = \
\ insert (Hash[X] Y) (insert (Hash{|X,Y|}) (parts (insert Y H)))";
by (Simp_tac 1);
qed "parts_insert_HPair";
Goalw [HPair_def]
"analz (insert (Hash[X] Y) H) = \
\ insert (Hash[X] Y) (insert (Hash{|X,Y|}) (analz (insert Y H)))";
by (Simp_tac 1);
qed "analz_insert_HPair";
Goalw [HPair_def] "X \\<notin> synth (analz H) \
\ ==> (Hash[X] Y \\<in> synth (analz H)) = \
\ (Hash {|X, Y|} \\<in> analz H & Y \\<in> synth (analz H))";
by (Simp_tac 1);
by (Blast_tac 1);
qed "HPair_synth_analz";
Addsimps [keysFor_insert_HPair, parts_insert_HPair, analz_insert_HPair,
HPair_synth_analz, HPair_synth_analz];
(*We do NOT want Crypt... messages broken up in protocols!!*)
Delrules [make_elim parts.Body];
(** Rewrites to push in Key and Crypt messages, so that other messages can
be pulled out using the analz_insert rules **)
fun insComm x y = inst "x" x (inst "y" y insert_commute);
val pushKeys = map (insComm "Key ?K")
["Agent ?C", "Nonce ?N", "Number ?N",
"Hash ?X", "MPair ?X ?Y", "Crypt ?X ?K'"];
val pushCrypts = map (insComm "Crypt ?X ?K")
["Agent ?C", "Nonce ?N", "Number ?N",
"Hash ?X'", "MPair ?X' ?Y"];
(*Cannot be added with Addsimps -- we don't always want to re-order messages*)
bind_thms ("pushes", pushKeys@pushCrypts);
(*** Tactics useful for many protocol proofs ***)
(*Prove base case (subgoal i) and simplify others. A typical base case
concerns Crypt K X \\<notin> Key`shrK`bad and cannot be proved by rewriting
alone.*)
fun prove_simple_subgoals_tac i =
force_tac (claset(), simpset() addsimps [image_eq_UN]) i THEN
ALLGOALS Asm_simp_tac;
fun Fake_parts_insert_tac i =
blast_tac (claset() addIs [parts_insertI]
addDs [impOfSubs analz_subset_parts,
impOfSubs Fake_parts_insert]) i;
(*Apply rules to break down assumptions of the form
Y \\<in> parts(insert X H) and Y \\<in> analz(insert X H)
*)
val Fake_insert_tac =
dresolve_tac [impOfSubs Fake_analz_insert,
impOfSubs Fake_parts_insert] THEN'
eresolve_tac [asm_rl, synth.Inj];
fun Fake_insert_simp_tac i =
REPEAT (Fake_insert_tac i) THEN Asm_full_simp_tac i;
(*Analysis of Fake cases. Also works for messages that forward unknown parts,
but this application is no longer necessary if analz_insert_eq is used.
Abstraction over i is ESSENTIAL: it delays the dereferencing of claset
DEPENDS UPON "X" REFERRING TO THE FRADULENT MESSAGE *)
val atomic_spy_analz_tac = SELECT_GOAL
(Fake_insert_simp_tac 1
THEN
IF_UNSOLVED (Blast.depth_tac
(claset() addIs [analz_insertI,
impOfSubs analz_subset_parts]) 4 1));
fun spy_analz_tac i =
DETERM
(SELECT_GOAL
(EVERY
[ (*push in occurrences of X...*)
(REPEAT o CHANGED)
(res_inst_tac [("x1","X")] (insert_commute RS ssubst) 1),
(*...allowing further simplifications*)
Simp_tac 1,
REPEAT (FIRSTGOAL (resolve_tac [allI,impI,notI,conjI,iffI])),
DEPTH_SOLVE (atomic_spy_analz_tac 1)]) i);
(*By default only o_apply is built-in. But in the presence of eta-expansion
this means that some terms displayed as (f o g) will be rewritten, and others
will not!*)
Addsimps [o_def];