(* Title: Pure/Thy/term_style.ML
Author: Florian Haftmann, TU Muenchen
Styles for term printing.
*)
signature TERM_STYLE =
sig
val setup: binding -> (Proof.context -> term -> term) parser -> theory -> theory
val parse: (term -> term) context_parser
end;
structure Term_Style: TERM_STYLE =
struct
(* theory data *)
structure Data = Theory_Data
(
type T = (Proof.context -> term -> term) parser Name_Space.table;
val empty : T = Name_Space.empty_table "antiquotation_style";
fun merge data : T = Name_Space.merge_tables data;
);
val get_data = Data.get o Proof_Context.theory_of;
fun setup binding style thy =
Data.map (#2 o Name_Space.define (Context.Theory thy) true (binding, style)) thy;
(* style parsing *)
fun parse_single ctxt =
Parse.token Parse.name ::: Parse.args >> (fn src0 =>
let
val (src, parse) = Token.check_src ctxt get_data src0;
val (f, _) = Token.syntax (Scan.lift parse) src ctxt;
in f ctxt end);
val parse = Args.context :|-- (fn ctxt => Scan.lift
(Args.parens (parse_single ctxt ::: Scan.repeat (Args.$$$ "," |-- parse_single ctxt))
>> fold I
|| Scan.succeed I));
(* predefined styles *)
fun style_lhs_rhs proj = Scan.succeed (fn ctxt => fn t =>
let
val concl = Object_Logic.drop_judgment ctxt (Logic.strip_imp_concl t);
in
(case concl of
_ $ l $ r => proj (l, r)
| _ => error ("Binary operator expected in term: " ^ Syntax.string_of_term ctxt concl))
end);
val style_prem = Parse.nat >> (fn i => fn ctxt => fn t =>
let
val prems = Logic.strip_imp_prems t;
in
if i <= length prems then nth prems (i - 1)
else
error ("Not enough premises for prem " ^ string_of_int i ^
" in propositon: " ^ Syntax.string_of_term ctxt t)
end);
fun sub_symbols (d :: s :: ss) =
if Symbol.is_ascii_digit d andalso not (Symbol.is_control s)
then d :: "\<^sub>" :: sub_symbols (s :: ss)
else d :: s :: ss
| sub_symbols cs = cs;
val sub_name = implode o rev o sub_symbols o rev o Symbol.explode;
fun sub_term (Free (n, T)) = Free (sub_name n, T)
| sub_term (Var ((n, idx), T)) =
if idx <> 0 then Var ((sub_name (n ^ string_of_int idx), 0), T)
else Var ((sub_name n, 0), T)
| sub_term (t $ u) = sub_term t $ sub_term u
| sub_term (Abs (n, T, b)) = Abs (sub_name n, T, sub_term b)
| sub_term t = t;
val _ = Theory.setup
(setup \<^binding>\<open>lhs\<close> (style_lhs_rhs fst) #>
setup \<^binding>\<open>rhs\<close> (style_lhs_rhs snd) #>
setup \<^binding>\<open>prem\<close> style_prem #>
setup \<^binding>\<open>concl\<close> (Scan.succeed (K Logic.strip_imp_concl)) #>
setup \<^binding>\<open>sub\<close> (Scan.succeed (K sub_term)));
end;