(* Title: Pure/axclass.ML
ID: $Id$
Author: Markus Wenzel, TU Muenchen
License: GPL (GNU GENERAL PUBLIC LICENSE)
Axiomatic type class package.
*)
signature AX_CLASS =
sig
val quiet_mode: bool ref
val print_axclasses: theory -> unit
val add_classrel_thms: thm list -> theory -> theory
val add_arity_thms: thm list -> theory -> theory
val add_axclass: bclass * xclass list -> ((bstring * string) * Args.src list) list
-> theory -> theory * {intro: thm, axioms: thm list}
val add_axclass_i: bclass * class list -> ((bstring * term) * theory attribute list) list
-> theory -> theory * {intro: thm, axioms: thm list}
val add_inst_subclass_x: xclass * xclass -> string list -> thm list
-> tactic option -> theory -> theory
val add_inst_subclass: xclass * xclass -> tactic -> theory -> theory
val add_inst_subclass_i: class * class -> tactic -> theory -> theory
val add_inst_arity_x: xstring * string list * string -> string list
-> thm list -> tactic option -> theory -> theory
val add_inst_arity: xstring * string list * string -> tactic -> theory -> theory
val add_inst_arity_i: string * sort list * sort -> tactic -> theory -> theory
val default_intro_classes_tac: thm list -> tactic
val axclass_tac: thm list -> tactic
val instance_subclass_proof: xclass * xclass -> bool -> theory -> ProofHistory.T
val instance_subclass_proof_i: class * class -> bool -> theory -> ProofHistory.T
val instance_arity_proof: xstring * string list * string -> bool -> theory -> ProofHistory.T
val instance_arity_proof_i: string * sort list * sort -> bool -> theory -> ProofHistory.T
val setup: (theory -> theory) list
end;
structure AxClass : AX_CLASS =
struct
(** utilities **)
(* messages *)
val quiet_mode = ref false;
fun message s = if ! quiet_mode then () else writeln s;
(* type vars *)
fun map_typ_frees f (Type (t, tys)) = Type (t, map (map_typ_frees f) tys)
| map_typ_frees f (TFree a) = f a
| map_typ_frees _ a = a;
val map_term_tfrees = map_term_types o map_typ_frees;
fun aT S = TFree ("'a", S);
fun dest_varT (TFree (x, S)) = ((x, ~1), S)
| dest_varT (TVar xi_S) = xi_S
| dest_varT T = raise TYPE ("dest_varT", [T], []);
(* get axioms and theorems *)
val is_def = Logic.is_equals o #prop o rep_thm;
fun witnesses thy names thms =
PureThy.get_thmss thy names @ thms @ filter is_def (map snd (axioms_of thy));
(** abstract syntax operations **)
(* names *)
fun intro_name c = c ^ "I";
val introN = "intro";
val axiomsN = "axioms";
(* subclass relations as terms *)
fun mk_classrel (c1, c2) = Logic.mk_inclass (aT [c1], c2);
fun dest_classrel tm =
let
fun err () = raise TERM ("dest_classrel", [tm]);
val (ty, c2) = Logic.dest_inclass tm handle TERM _ => err ();
val c1 = (case dest_varT ty of (_, [c]) => c | _ => err ())
handle TYPE _ => err ();
in (c1, c2) end;
(* arities as terms *)
fun mk_arity (t, Ss, c) =
let
val tfrees = ListPair.map TFree (Term.invent_type_names [] (length Ss), Ss);
in Logic.mk_inclass (Type (t, tfrees), c) end;
fun mk_arities (t, Ss, S) = map (fn c => mk_arity (t, Ss, c)) S;
fun dest_arity tm =
let
fun err () = raise TERM ("dest_arity", [tm]);
val (ty, c) = Logic.dest_inclass tm handle TERM _ => err ();
val (t, tvars) =
(case ty of
Type (t, tys) => (t, map dest_varT tys handle TYPE _ => err ())
| _ => err ());
val ss =
if null (gen_duplicates eq_fst tvars)
then map snd tvars else err ();
in (t, ss, c) end;
(** add theorems as axioms **)
fun prep_thm_axm thy thm =
let
fun err msg = raise THM ("prep_thm_axm: " ^ msg, 0, [thm]);
val {sign, hyps, prop, ...} = rep_thm thm;
in
if not (Sign.subsig (sign, Theory.sign_of thy)) then
err "theorem not of same theory"
else if not (null (extra_shyps thm)) orelse not (null hyps) then
err "theorem may not contain hypotheses"
else prop
end;
(*theorems expressing class relations*)
fun add_classrel_thms thms thy =
let
fun prep_thm thm =
let
val prop = prep_thm_axm thy thm;
val (c1, c2) = dest_classrel prop handle TERM _ =>
raise THM ("add_classrel_thms: theorem is not a class relation", 0, [thm]);
in (c1, c2) end;
in Theory.add_classrel_i (map prep_thm thms) thy end;
(*theorems expressing arities*)
fun add_arity_thms thms thy =
let
fun prep_thm thm =
let
val prop = prep_thm_axm thy thm;
val (t, ss, c) = dest_arity prop handle TERM _ =>
raise THM ("add_arity_thms: theorem is not an arity", 0, [thm]);
in (t, ss, [c]) end;
in Theory.add_arities_i (map prep_thm thms) thy end;
(** axclass info **)
(* data kind 'Pure/axclasses' *)
type axclass_info =
{super_classes: class list,
intro: thm,
axioms: thm list};
structure AxclassesArgs =
struct
val name = "Pure/axclasses";
type T = axclass_info Symtab.table;
val empty = Symtab.empty;
val copy = I;
val prep_ext = I;
fun merge (tab1, tab2) = Symtab.merge (K true) (tab1, tab2);
fun print sg tab =
let
val ext_class = Sign.cond_extern sg Sign.classK;
val ext_thm = PureThy.cond_extern_thm_sg sg;
fun pretty_class c cs = Pretty.block
(Pretty.str (ext_class c) :: Pretty.str " <" :: Pretty.brk 1 ::
Pretty.breaks (map (Pretty.str o ext_class) cs));
fun pretty_thms name thms = Pretty.big_list (name ^ ":")
(map (Display.pretty_thm_sg sg) thms);
fun pretty_axclass (name, {super_classes, intro, axioms}) = Pretty.block (Pretty.fbreaks
[pretty_class name super_classes, pretty_thms introN [intro], pretty_thms axiomsN axioms]);
in Pretty.writeln (Pretty.chunks (map pretty_axclass (Symtab.dest tab))) end;
end;
structure AxclassesData = TheoryDataFun(AxclassesArgs);
val print_axclasses = AxclassesData.print;
(* get and put data *)
fun lookup_axclass_info_sg sg c = Symtab.lookup (AxclassesData.get_sg sg, c);
fun get_axclass_info thy c =
(case lookup_axclass_info_sg (Theory.sign_of thy) c of
None => error ("Unknown axclass " ^ quote c)
| Some info => info);
fun put_axclass_info c info thy =
thy |> AxclassesData.put (Symtab.update ((c, info), AxclassesData.get thy));
(** add axiomatic type classes **)
(* errors *)
fun err_not_logic c =
error ("Axiomatic class " ^ quote c ^ " not subclass of " ^ quote logicC);
fun err_bad_axsort ax c =
error ("Sort constraint in axiom " ^ quote ax ^ " not supersort of " ^ quote c);
fun err_bad_tfrees ax =
error ("More than one type variable in axiom " ^ quote ax);
(* ext_axclass *)
fun ext_axclass prep_class prep_axm prep_att (bclass, raw_super_classes) raw_axioms_atts thy =
let
val sign = Theory.sign_of thy;
val class = Sign.full_name sign bclass;
val super_classes = map (prep_class sign) raw_super_classes;
val axms = map (prep_axm sign o fst) raw_axioms_atts;
val atts = map (map (prep_att thy) o snd) raw_axioms_atts;
(*declare class*)
val class_thy =
thy |> Theory.add_classes_i [(bclass, super_classes)];
val class_sign = Theory.sign_of class_thy;
(*prepare abstract axioms*)
fun abs_axm ax =
if null (term_tfrees ax) then
Logic.mk_implies (Logic.mk_inclass (aT logicS, class), ax)
else map_term_tfrees (K (aT [class])) ax;
val abs_axms = map (abs_axm o #2) axms;
(*prepare introduction rule*)
val _ = if Sign.subsort class_sign ([class], logicS) then () else err_not_logic class;
fun axm_sort (name, ax) =
(case term_tfrees ax of
[] => []
| [(_, S)] => if Sign.subsort class_sign ([class], S) then S else err_bad_axsort name class
| _ => err_bad_tfrees name);
val axS = Sign.norm_sort class_sign (logicC :: flat (map axm_sort axms));
val int_axm = Logic.close_form o map_term_tfrees (K (aT axS));
fun inclass c = Logic.mk_inclass (aT axS, c);
val intro_axm = Logic.list_implies
(map inclass super_classes @ map (int_axm o #2) axms, inclass class);
(*declare axioms and rule*)
val (axms_thy, ([intro], [axioms])) =
class_thy
|> Theory.add_path bclass
|> PureThy.add_axioms_i [Thm.no_attributes (introN, intro_axm)]
|>>> PureThy.add_axiomss_i [Thm.no_attributes (axiomsN, abs_axms)];
val info = {super_classes = super_classes, intro = intro, axioms = axioms};
(*store info*)
val final_thy =
axms_thy
|> (#1 o PureThy.add_thms ((map #1 axms ~~ axioms) ~~ atts))
|> Theory.parent_path
|> (#1 o PureThy.add_thms [Thm.no_attributes (intro_name bclass, intro)])
|> put_axclass_info class info;
in (final_thy, {intro = intro, axioms = axioms}) end;
(* external interfaces *)
val add_axclass = ext_axclass Sign.intern_class Theory.read_axm Attrib.global_attribute;
val add_axclass_i = ext_axclass (K I) Theory.cert_axm (K I);
(** prove class relations and type arities **)
(* class_axms *)
fun class_axms sign =
let val classes = Sign.classes sign in
map (Thm.class_triv sign) classes @
mapfilter (apsome #intro o lookup_axclass_info_sg sign) classes
end;
(* intro_classes *)
fun intro_classes_tac facts st =
(ALLGOALS (Method.insert_tac facts THEN'
REPEAT_ALL_NEW (resolve_tac (class_axms (Thm.sign_of_thm st))))
THEN Tactic.distinct_subgoals_tac) st;
val intro_classes_method =
("intro_classes", Method.no_args (Method.METHOD intro_classes_tac),
"back-chain introduction rules of axiomatic type classes");
(* default method *)
fun default_intro_classes_tac [] = intro_classes_tac []
| default_intro_classes_tac _ = Tactical.no_tac; (*no error message!*)
fun default_tac rules ctxt facts =
HEADGOAL (Method.some_rule_tac rules ctxt facts) ORELSE
default_intro_classes_tac facts;
val default_method =
("default", Method.thms_ctxt_args (Method.METHOD oo default_tac), "apply some intro/elim rule");
(* old-style axclass_tac *)
(*(1) repeatedly resolve goals of form "OFCLASS(ty, c_class)",
try class_trivs first, then "cI" axioms
(2) rewrite goals using user supplied definitions
(3) repeatedly resolve goals with user supplied non-definitions*)
fun axclass_tac thms =
let
val defs = filter is_def thms;
val non_defs = filter_out is_def thms;
in
intro_classes_tac [] THEN
TRY (rewrite_goals_tac defs) THEN
TRY (REPEAT_FIRST (fn i => assume_tac i ORELSE resolve_tac non_defs i))
end;
(* old-style provers *)
fun prove mk_prop str_of sign prop thms usr_tac =
(Tactic.prove sign [] [] (mk_prop prop) (K (axclass_tac thms THEN (if_none usr_tac all_tac)))
handle ERROR => error ("The error(s) above occurred while trying to prove " ^
quote (str_of sign prop))) |> Drule.standard;
val prove_subclass =
prove mk_classrel (fn sg => fn c1_c2 => Sign.str_of_classrel sg c1_c2);
val prove_arity =
prove mk_arity (fn sg => fn (t, Ss, c) => Sign.str_of_arity sg (t, Ss, [c]));
(** add proved subclass relations and arities **)
(* prepare classes and arities *)
fun read_class sg c = Sign.certify_class sg (Sign.intern_class sg c);
fun cert_classrel sg cc = Library.pairself (Sign.certify_class sg) cc;
fun read_classrel sg cc = Library.pairself (read_class sg) cc;
fun check_tycon sg t =
let val {tycons, abbrs, ...} = Type.rep_tsig (Sign.tsig_of sg) in
if is_some (Symtab.lookup (abbrs, t)) then
error ("Illegal type abbreviation: " ^ quote t)
else if is_none (Symtab.lookup (tycons, t)) then
error ("Undeclared type constructor: " ^ quote t)
else t
end;
fun prep_arity prep_tycon prep_sort prep_x sg (t, Ss, x) =
(check_tycon sg (prep_tycon sg t), map (prep_sort sg) Ss, prep_x sg x);
val read_arity = prep_arity Sign.intern_tycon Sign.read_sort Sign.read_sort;
val cert_arity = prep_arity (K I) Sign.certify_sort Sign.certify_sort;
(* old-style instance declarations *)
fun ext_inst_subclass prep_classrel raw_c1_c2 names thms usr_tac thy =
let
val sign = Theory.sign_of thy;
val c1_c2 = prep_classrel sign raw_c1_c2;
in
message ("Proving class inclusion " ^ quote (Sign.str_of_classrel sign c1_c2) ^ " ...");
thy |> add_classrel_thms [prove_subclass sign c1_c2 (witnesses thy names thms) usr_tac]
end;
fun ext_inst_arity prep_arity (raw_t, raw_Ss, raw_cs) names thms usr_tac thy =
let
val sign = Theory.sign_of thy;
val (t, Ss, cs) = prep_arity sign (raw_t, raw_Ss, raw_cs);
val wthms = witnesses thy names thms;
fun prove c =
(message ("Proving type arity " ^
quote (Sign.str_of_arity sign (t, Ss, [c])) ^ " ...");
prove_arity sign (t, Ss, c) wthms usr_tac);
in add_arity_thms (map prove cs) thy end;
fun sane_inst_subclass prep sub tac = ext_inst_subclass prep sub [] [] (Some tac);
fun sane_inst_arity prep arity tac = ext_inst_arity prep arity [] [] (Some tac);
val add_inst_subclass_x = ext_inst_subclass read_classrel;
val add_inst_subclass = sane_inst_subclass read_classrel;
val add_inst_subclass_i = sane_inst_subclass cert_classrel;
val add_inst_arity_x = ext_inst_arity read_arity;
val add_inst_arity = sane_inst_arity read_arity;
val add_inst_arity_i = sane_inst_arity cert_arity;
(** instance proof interfaces **)
fun inst_proof mk_prop add_thms inst int theory =
theory
|> IsarThy.multi_theorem_i Drule.internalK
("", [fn (thy, th) => (add_thms [th] thy, th)]) []
(map (fn t => (("", []), [(t, ([], []))])) (mk_prop (Theory.sign_of theory) inst)) int;
val instance_subclass_proof =
inst_proof (single oo (mk_classrel oo read_classrel)) add_classrel_thms;
val instance_subclass_proof_i =
inst_proof (single oo (mk_classrel oo cert_classrel)) add_classrel_thms;
val instance_arity_proof = inst_proof (mk_arities oo read_arity) add_arity_thms;
val instance_arity_proof_i = inst_proof (mk_arities oo cert_arity) add_arity_thms;
(** package setup **)
(* setup theory *)
val setup =
[AxclassesData.init,
Method.add_methods [intro_classes_method, default_method]];
(* outer syntax *)
local structure P = OuterParse and K = OuterSyntax.Keyword in
val axclassP =
OuterSyntax.command "axclass" "define axiomatic type class" K.thy_decl
((P.name -- Scan.optional ((P.$$$ "\\<subseteq>" || P.$$$ "<") |--
P.!!! (P.list1 P.xname)) []) -- Scan.repeat P.spec_name
>> (fn (cls, axs) => Toplevel.theory (#1 o add_axclass cls axs)));
val instanceP =
OuterSyntax.command "instance" "prove type arity or subclass relation" K.thy_goal
((P.xname -- ((P.$$$ "\\<subseteq>" || P.$$$ "<") |-- P.xname) >> instance_subclass_proof ||
(P.xname -- (P.$$$ "::" |-- P.arity) >> P.triple2) >> instance_arity_proof)
>> (Toplevel.print oo Toplevel.theory_to_proof));
val _ = OuterSyntax.add_parsers [axclassP, instanceP];
end;
end;