src/HOL/Complete_Lattices.thy
author wenzelm
Fri, 29 Nov 2024 17:40:15 +0100
changeset 81507 08574da77b4a
parent 81125 ec121999a9cb
permissions -rw-r--r--
clarified signature: shorten common cases;

(*  Title:      HOL/Complete_Lattices.thy
    Author:     Tobias Nipkow
    Author:     Lawrence C Paulson
    Author:     Markus Wenzel
    Author:     Florian Haftmann
    Author:     Viorel Preoteasa (Complete Distributive Lattices)     
*)

section \<open>Complete lattices\<close>

theory Complete_Lattices
  imports Fun
begin

subsection \<open>Syntactic infimum and supremum operations\<close>

class Inf =
  fixes Inf :: "'a set \<Rightarrow> 'a"  (\<open>(\<open>open_block notation=\<open>prefix \<Sqinter>\<close>\<close>\<Sqinter> _)\<close> [900] 900)

class Sup =
  fixes Sup :: "'a set \<Rightarrow> 'a"  (\<open>(\<open>open_block notation=\<open>prefix \<Squnion>\<close>\<close>\<Squnion> _)\<close> [900] 900)

syntax
  "_INF1"     :: "pttrns \<Rightarrow> 'b \<Rightarrow> 'b"           (\<open>(\<open>indent=3 notation=\<open>binder INF\<close>\<close>INF _./ _)\<close> [0, 10] 10)
  "_INF"      :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> 'b"  (\<open>(\<open>indent=3 notation=\<open>binder INF\<close>\<close>INF _\<in>_./ _)\<close> [0, 0, 10] 10)
  "_SUP1"     :: "pttrns \<Rightarrow> 'b \<Rightarrow> 'b"           (\<open>(\<open>indent=3 notation=\<open>binder SUP\<close>\<close>SUP _./ _)\<close> [0, 10] 10)
  "_SUP"      :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> 'b"  (\<open>(\<open>indent=3 notation=\<open>binder SUP\<close>\<close>SUP _\<in>_./ _)\<close> [0, 0, 10] 10)

syntax
  "_INF1"     :: "pttrns \<Rightarrow> 'b \<Rightarrow> 'b"           (\<open>(\<open>indent=3 notation=\<open>binder \<Sqinter>\<close>\<close>\<Sqinter>_./ _)\<close> [0, 10] 10)
  "_INF"      :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> 'b"  (\<open>(\<open>indent=3 notation=\<open>binder \<Sqinter>\<close>\<close>\<Sqinter>_\<in>_./ _)\<close> [0, 0, 10] 10)
  "_SUP1"     :: "pttrns \<Rightarrow> 'b \<Rightarrow> 'b"           (\<open>(\<open>indent=3 notation=\<open>binder \<Squnion>\<close>\<close>\<Squnion>_./ _)\<close> [0, 10] 10)
  "_SUP"      :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> 'b"  (\<open>(\<open>indent=3 notation=\<open>binder \<Squnion>\<close>\<close>\<Squnion>_\<in>_./ _)\<close> [0, 0, 10] 10)

syntax_consts
  "_INF1" "_INF" \<rightleftharpoons> Inf and
  "_SUP1" "_SUP" \<rightleftharpoons> Sup

translations
  "\<Sqinter>x y. f"   \<rightleftharpoons> "\<Sqinter>x. \<Sqinter>y. f"
  "\<Sqinter>x. f"     \<rightleftharpoons> "\<Sqinter>(CONST range (\<lambda>x. f))"
  "\<Sqinter>x\<in>A. f"   \<rightleftharpoons> "CONST Inf ((\<lambda>x. f) ` A)"
  "\<Squnion>x y. f"   \<rightleftharpoons> "\<Squnion>x. \<Squnion>y. f"
  "\<Squnion>x. f"     \<rightleftharpoons> "\<Squnion>(CONST range (\<lambda>x. f))"
  "\<Squnion>x\<in>A. f"   \<rightleftharpoons> "CONST Sup ((\<lambda>x. f) `  A)"

context Inf
begin

lemma INF_image: "\<Sqinter> (g ` f ` A) = \<Sqinter> ((g \<circ> f) ` A)"
  by (simp add: image_comp)

lemma INF_identity_eq [simp]: "(\<Sqinter>x\<in>A. x) = \<Sqinter>A"
  by simp

lemma INF_id_eq [simp]: "\<Sqinter>(id ` A) = \<Sqinter>A"
  by simp

lemma INF_cong: "A = B \<Longrightarrow> (\<And>x. x \<in> B \<Longrightarrow> C x = D x) \<Longrightarrow> \<Sqinter>(C ` A) = \<Sqinter>(D ` B)"
  by (simp add: image_def)

lemma INF_cong_simp:
  "A = B \<Longrightarrow> (\<And>x. x \<in> B =simp=> C x = D x) \<Longrightarrow> \<Sqinter>(C ` A) = \<Sqinter>(D ` B)"
  unfolding simp_implies_def by (fact INF_cong)

end

context Sup
begin

lemma SUP_image: "\<Squnion> (g ` f ` A) = \<Squnion> ((g \<circ> f) ` A)"
by(fact Inf.INF_image)

lemma SUP_identity_eq [simp]: "(\<Squnion>x\<in>A. x) = \<Squnion>A"
by(fact Inf.INF_identity_eq)

lemma SUP_id_eq [simp]: "\<Squnion>(id ` A) = \<Squnion>A"
by(fact Inf.INF_id_eq)

lemma SUP_cong: "A = B \<Longrightarrow> (\<And>x. x \<in> B \<Longrightarrow> C x = D x) \<Longrightarrow> \<Squnion>(C ` A) = \<Squnion>(D ` B)"
by (fact Inf.INF_cong)

lemma SUP_cong_simp:
  "A = B \<Longrightarrow> (\<And>x. x \<in> B =simp=> C x = D x) \<Longrightarrow> \<Squnion>(C ` A) = \<Squnion>(D ` B)"
by (fact Inf.INF_cong_simp)

end


subsection \<open>Abstract complete lattices\<close>

text \<open>A complete lattice always has a bottom and a top,
so we include them into the following type class,
along with assumptions that define bottom and top
in terms of infimum and supremum.\<close>

class complete_lattice = lattice + Inf + Sup + bot + top +
  assumes Inf_lower: "x \<in> A \<Longrightarrow> \<Sqinter>A \<le> x"
    and Inf_greatest: "(\<And>x. x \<in> A \<Longrightarrow> z \<le> x) \<Longrightarrow> z \<le> \<Sqinter>A"
    and Sup_upper: "x \<in> A \<Longrightarrow> x \<le> \<Squnion>A"
    and Sup_least: "(\<And>x. x \<in> A \<Longrightarrow> x \<le> z) \<Longrightarrow> \<Squnion>A \<le> z"
    and Inf_empty [simp]: "\<Sqinter>{} = \<top>"
    and Sup_empty [simp]: "\<Squnion>{} = \<bottom>"
begin

subclass bounded_lattice
proof
  fix a
  show "\<bottom> \<le> a"
    by (auto intro: Sup_least simp only: Sup_empty [symmetric])
  show "a \<le> \<top>"
    by (auto intro: Inf_greatest simp only: Inf_empty [symmetric])
qed

lemma dual_complete_lattice: "class.complete_lattice Sup Inf sup (\<ge>) (>) inf \<top> \<bottom>"
  by (auto intro!: class.complete_lattice.intro dual_lattice)
    (unfold_locales, (fact Inf_empty Sup_empty Sup_upper Sup_least Inf_lower Inf_greatest)+)

end

context complete_lattice
begin

lemma Sup_eqI:
  "(\<And>y. y \<in> A \<Longrightarrow> y \<le> x) \<Longrightarrow> (\<And>y. (\<And>z. z \<in> A \<Longrightarrow> z \<le> y) \<Longrightarrow> x \<le> y) \<Longrightarrow> \<Squnion>A = x"
  by (blast intro: order.antisym Sup_least Sup_upper)

lemma Inf_eqI:
  "(\<And>i. i \<in> A \<Longrightarrow> x \<le> i) \<Longrightarrow> (\<And>y. (\<And>i. i \<in> A \<Longrightarrow> y \<le> i) \<Longrightarrow> y \<le> x) \<Longrightarrow> \<Sqinter>A = x"
  by (blast intro: order.antisym Inf_greatest Inf_lower)

lemma SUP_eqI:
  "(\<And>i. i \<in> A \<Longrightarrow> f i \<le> x) \<Longrightarrow> (\<And>y. (\<And>i. i \<in> A \<Longrightarrow> f i \<le> y) \<Longrightarrow> x \<le> y) \<Longrightarrow> (\<Squnion>i\<in>A. f i) = x"
  using Sup_eqI [of "f ` A" x] by auto

lemma INF_eqI:
  "(\<And>i. i \<in> A \<Longrightarrow> x \<le> f i) \<Longrightarrow> (\<And>y. (\<And>i. i \<in> A \<Longrightarrow> f i \<ge> y) \<Longrightarrow> x \<ge> y) \<Longrightarrow> (\<Sqinter>i\<in>A. f i) = x"
  using Inf_eqI [of "f ` A" x] by auto

lemma INF_lower: "i \<in> A \<Longrightarrow> (\<Sqinter>i\<in>A. f i) \<le> f i"
  using Inf_lower [of _ "f ` A"] by simp

lemma INF_greatest: "(\<And>i. i \<in> A \<Longrightarrow> u \<le> f i) \<Longrightarrow> u \<le> (\<Sqinter>i\<in>A. f i)"
  using Inf_greatest [of "f ` A"] by auto

lemma SUP_upper: "i \<in> A \<Longrightarrow> f i \<le> (\<Squnion>i\<in>A. f i)"
  using Sup_upper [of _ "f ` A"] by simp

lemma SUP_least: "(\<And>i. i \<in> A \<Longrightarrow> f i \<le> u) \<Longrightarrow> (\<Squnion>i\<in>A. f i) \<le> u"
  using Sup_least [of "f ` A"] by auto

lemma Inf_lower2: "u \<in> A \<Longrightarrow> u \<le> v \<Longrightarrow> \<Sqinter>A \<le> v"
  using Inf_lower [of u A] by auto

lemma INF_lower2: "i \<in> A \<Longrightarrow> f i \<le> u \<Longrightarrow> (\<Sqinter>i\<in>A. f i) \<le> u"
  using INF_lower [of i A f] by auto

lemma Sup_upper2: "u \<in> A \<Longrightarrow> v \<le> u \<Longrightarrow> v \<le> \<Squnion>A"
  using Sup_upper [of u A] by auto

lemma SUP_upper2: "i \<in> A \<Longrightarrow> u \<le> f i \<Longrightarrow> u \<le> (\<Squnion>i\<in>A. f i)"
  using SUP_upper [of i A f] by auto

lemma le_Inf_iff: "b \<le> \<Sqinter>A \<longleftrightarrow> (\<forall>a\<in>A. b \<le> a)"
  by (auto intro: Inf_greatest dest: Inf_lower)

lemma le_INF_iff: "u \<le> (\<Sqinter>i\<in>A. f i) \<longleftrightarrow> (\<forall>i\<in>A. u \<le> f i)"
  using le_Inf_iff [of _ "f ` A"] by simp

lemma Sup_le_iff: "\<Squnion>A \<le> b \<longleftrightarrow> (\<forall>a\<in>A. a \<le> b)"
  by (auto intro: Sup_least dest: Sup_upper)

lemma SUP_le_iff: "(\<Squnion>i\<in>A. f i) \<le> u \<longleftrightarrow> (\<forall>i\<in>A. f i \<le> u)"
  using Sup_le_iff [of "f ` A"] by simp

lemma Inf_insert [simp]: "\<Sqinter>(insert a A) = a \<sqinter> \<Sqinter>A"
  by (auto intro: le_infI le_infI1 le_infI2 order.antisym Inf_greatest Inf_lower)

lemma INF_insert: "(\<Sqinter>x\<in>insert a A. f x) = f a \<sqinter> \<Sqinter>(f ` A)"
  by simp

lemma Sup_insert [simp]: "\<Squnion>(insert a A) = a \<squnion> \<Squnion>A"
  by (auto intro: le_supI le_supI1 le_supI2 order.antisym Sup_least Sup_upper)

lemma SUP_insert: "(\<Squnion>x\<in>insert a A. f x) = f a \<squnion> \<Squnion>(f ` A)"
  by simp

lemma INF_empty: "(\<Sqinter>x\<in>{}. f x) = \<top>"
  by simp

lemma SUP_empty: "(\<Squnion>x\<in>{}. f x) = \<bottom>"
  by simp

lemma Inf_UNIV [simp]: "\<Sqinter>UNIV = \<bottom>"
  by (auto intro!: order.antisym Inf_lower)

lemma Sup_UNIV [simp]: "\<Squnion>UNIV = \<top>"
  by (auto intro!: order.antisym Sup_upper)

lemma Inf_eq_Sup: "\<Sqinter>A = \<Squnion>{b. \<forall>a \<in> A. b \<le> a}"
  by (auto intro: order.antisym Inf_lower Inf_greatest Sup_upper Sup_least)

lemma Sup_eq_Inf:  "\<Squnion>A = \<Sqinter>{b. \<forall>a \<in> A. a \<le> b}"
  by (auto intro: order.antisym Inf_lower Inf_greatest Sup_upper Sup_least)

lemma Inf_superset_mono: "B \<subseteq> A \<Longrightarrow> \<Sqinter>A \<le> \<Sqinter>B"
  by (auto intro: Inf_greatest Inf_lower)

lemma Sup_subset_mono: "A \<subseteq> B \<Longrightarrow> \<Squnion>A \<le> \<Squnion>B"
  by (auto intro: Sup_least Sup_upper)

lemma Inf_mono:
  assumes "\<And>b. b \<in> B \<Longrightarrow> \<exists>a\<in>A. a \<le> b"
  shows "\<Sqinter>A \<le> \<Sqinter>B"
proof (rule Inf_greatest)
  fix b assume "b \<in> B"
  with assms obtain a where "a \<in> A" and "a \<le> b" by blast
  from \<open>a \<in> A\<close> have "\<Sqinter>A \<le> a" by (rule Inf_lower)
  with \<open>a \<le> b\<close> show "\<Sqinter>A \<le> b" by auto
qed

lemma INF_mono: "(\<And>m. m \<in> B \<Longrightarrow> \<exists>n\<in>A. f n \<le> g m) \<Longrightarrow> (\<Sqinter>n\<in>A. f n) \<le> (\<Sqinter>n\<in>B. g n)"
  using Inf_mono [of "g ` B" "f ` A"] by auto

lemma INF_mono': "(\<And>x. f x \<le> g x) \<Longrightarrow> (\<Sqinter>x\<in>A. f x) \<le> (\<Sqinter>x\<in>A. g x)"
  by (rule INF_mono) auto

lemma Sup_mono:
  assumes "\<And>a. a \<in> A \<Longrightarrow> \<exists>b\<in>B. a \<le> b"
  shows "\<Squnion>A \<le> \<Squnion>B"
proof (rule Sup_least)
  fix a assume "a \<in> A"
  with assms obtain b where "b \<in> B" and "a \<le> b" by blast
  from \<open>b \<in> B\<close> have "b \<le> \<Squnion>B" by (rule Sup_upper)
  with \<open>a \<le> b\<close> show "a \<le> \<Squnion>B" by auto
qed

lemma SUP_mono: "(\<And>n. n \<in> A \<Longrightarrow> \<exists>m\<in>B. f n \<le> g m) \<Longrightarrow> (\<Squnion>n\<in>A. f n) \<le> (\<Squnion>n\<in>B. g n)"
  using Sup_mono [of "f ` A" "g ` B"] by auto

lemma SUP_mono': "(\<And>x. f x \<le> g x) \<Longrightarrow> (\<Squnion>x\<in>A. f x) \<le> (\<Squnion>x\<in>A. g x)"
  by (rule SUP_mono) auto

lemma INF_superset_mono: "B \<subseteq> A \<Longrightarrow> (\<And>x. x \<in> B \<Longrightarrow> f x \<le> g x) \<Longrightarrow> (\<Sqinter>x\<in>A. f x) \<le> (\<Sqinter>x\<in>B. g x)"
  \<comment> \<open>The last inclusion is POSITIVE!\<close>
  by (blast intro: INF_mono dest: subsetD)

lemma SUP_subset_mono: "A \<subseteq> B \<Longrightarrow> (\<And>x. x \<in> A \<Longrightarrow> f x \<le> g x) \<Longrightarrow> (\<Squnion>x\<in>A. f x) \<le> (\<Squnion>x\<in>B. g x)"
  by (blast intro: SUP_mono dest: subsetD)

lemma Inf_less_eq:
  assumes "\<And>v. v \<in> A \<Longrightarrow> v \<le> u"
    and "A \<noteq> {}"
  shows "\<Sqinter>A \<le> u"
proof -
  from \<open>A \<noteq> {}\<close> obtain v where "v \<in> A" by blast
  moreover from \<open>v \<in> A\<close> assms(1) have "v \<le> u" by blast
  ultimately show ?thesis by (rule Inf_lower2)
qed

lemma less_eq_Sup:
  assumes "\<And>v. v \<in> A \<Longrightarrow> u \<le> v"
    and "A \<noteq> {}"
  shows "u \<le> \<Squnion>A"
proof -
  from \<open>A \<noteq> {}\<close> obtain v where "v \<in> A" by blast
  moreover from \<open>v \<in> A\<close> assms(1) have "u \<le> v" by blast
  ultimately show ?thesis by (rule Sup_upper2)
qed

lemma INF_eq:
  assumes "\<And>i. i \<in> A \<Longrightarrow> \<exists>j\<in>B. f i \<ge> g j"
    and "\<And>j. j \<in> B \<Longrightarrow> \<exists>i\<in>A. g j \<ge> f i"
  shows "\<Sqinter>(f ` A) = \<Sqinter>(g ` B)"
  by (intro order.antisym INF_greatest) (blast intro: INF_lower2 dest: assms)+

lemma SUP_eq:
  assumes "\<And>i. i \<in> A \<Longrightarrow> \<exists>j\<in>B. f i \<le> g j"
    and "\<And>j. j \<in> B \<Longrightarrow> \<exists>i\<in>A. g j \<le> f i"
  shows "\<Squnion>(f ` A) = \<Squnion>(g ` B)"
  by (intro order.antisym SUP_least) (blast intro: SUP_upper2 dest: assms)+

lemma less_eq_Inf_inter: "\<Sqinter>A \<squnion> \<Sqinter>B \<le> \<Sqinter>(A \<inter> B)"
  by (auto intro: Inf_greatest Inf_lower)

lemma Sup_inter_less_eq: "\<Squnion>(A \<inter> B) \<le> \<Squnion>A \<sqinter> \<Squnion>B "
  by (auto intro: Sup_least Sup_upper)

lemma Inf_union_distrib: "\<Sqinter>(A \<union> B) = \<Sqinter>A \<sqinter> \<Sqinter>B"
  by (rule order.antisym) (auto intro: Inf_greatest Inf_lower le_infI1 le_infI2)

lemma INF_union: "(\<Sqinter>i \<in> A \<union> B. M i) = (\<Sqinter>i \<in> A. M i) \<sqinter> (\<Sqinter>i\<in>B. M i)"
  by (auto intro!: order.antisym INF_mono intro: le_infI1 le_infI2 INF_greatest INF_lower)

lemma Sup_union_distrib: "\<Squnion>(A \<union> B) = \<Squnion>A \<squnion> \<Squnion>B"
  by (rule order.antisym) (auto intro: Sup_least Sup_upper le_supI1 le_supI2)

lemma SUP_union: "(\<Squnion>i \<in> A \<union> B. M i) = (\<Squnion>i \<in> A. M i) \<squnion> (\<Squnion>i\<in>B. M i)"
  by (auto intro!: order.antisym SUP_mono intro: le_supI1 le_supI2 SUP_least SUP_upper)

lemma INF_inf_distrib: "(\<Sqinter>a\<in>A. f a) \<sqinter> (\<Sqinter>a\<in>A. g a) = (\<Sqinter>a\<in>A. f a \<sqinter> g a)"
  by (rule order.antisym) (rule INF_greatest, auto intro: le_infI1 le_infI2 INF_lower INF_mono)

lemma SUP_sup_distrib: "(\<Squnion>a\<in>A. f a) \<squnion> (\<Squnion>a\<in>A. g a) = (\<Squnion>a\<in>A. f a \<squnion> g a)"
  (is "?L = ?R")
proof (rule order.antisym)
  show "?L \<le> ?R"
    by (auto intro: le_supI1 le_supI2 SUP_upper SUP_mono)
  show "?R \<le> ?L"
    by (rule SUP_least) (auto intro: le_supI1 le_supI2 SUP_upper)
qed

lemma Inf_top_conv [simp]:
  "\<Sqinter>A = \<top> \<longleftrightarrow> (\<forall>x\<in>A. x = \<top>)"
  "\<top> = \<Sqinter>A \<longleftrightarrow> (\<forall>x\<in>A. x = \<top>)"
proof -
  show "\<Sqinter>A = \<top> \<longleftrightarrow> (\<forall>x\<in>A. x = \<top>)"
  proof
    assume "\<forall>x\<in>A. x = \<top>"
    then have "A = {} \<or> A = {\<top>}" by auto
    then show "\<Sqinter>A = \<top>" by auto
  next
    assume "\<Sqinter>A = \<top>"
    show "\<forall>x\<in>A. x = \<top>"
    proof (rule ccontr)
      assume "\<not> (\<forall>x\<in>A. x = \<top>)"
      then obtain x where "x \<in> A" and "x \<noteq> \<top>" by blast
      then obtain B where "A = insert x B" by blast
      with \<open>\<Sqinter>A = \<top>\<close> \<open>x \<noteq> \<top>\<close> show False by simp
    qed
  qed
  then show "\<top> = \<Sqinter>A \<longleftrightarrow> (\<forall>x\<in>A. x = \<top>)" by auto
qed

lemma INF_top_conv [simp]:
  "(\<Sqinter>x\<in>A. B x) = \<top> \<longleftrightarrow> (\<forall>x\<in>A. B x = \<top>)"
  "\<top> = (\<Sqinter>x\<in>A. B x) \<longleftrightarrow> (\<forall>x\<in>A. B x = \<top>)"
  using Inf_top_conv [of "B ` A"] by simp_all

lemma Sup_bot_conv [simp]:
  "\<Squnion>A = \<bottom> \<longleftrightarrow> (\<forall>x\<in>A. x = \<bottom>)"
  "\<bottom> = \<Squnion>A \<longleftrightarrow> (\<forall>x\<in>A. x = \<bottom>)"
  using dual_complete_lattice
  by (rule complete_lattice.Inf_top_conv)+

lemma SUP_bot_conv [simp]:
  "(\<Squnion>x\<in>A. B x) = \<bottom> \<longleftrightarrow> (\<forall>x\<in>A. B x = \<bottom>)"
  "\<bottom> = (\<Squnion>x\<in>A. B x) \<longleftrightarrow> (\<forall>x\<in>A. B x = \<bottom>)"
  using Sup_bot_conv [of "B ` A"] by simp_all

lemma INF_constant: "(\<Sqinter>y\<in>A. c) = (if A = {} then \<top> else c)"
  by (auto intro: order.antisym INF_lower INF_greatest)

lemma SUP_constant: "(\<Squnion>y\<in>A. c) = (if A = {} then \<bottom> else c)"
  by (auto intro: order.antisym SUP_upper SUP_least)

lemma INF_const [simp]: "A \<noteq> {} \<Longrightarrow> (\<Sqinter>i\<in>A. f) = f"
  by (simp add: INF_constant)

lemma SUP_const [simp]: "A \<noteq> {} \<Longrightarrow> (\<Squnion>i\<in>A. f) = f"
  by (simp add: SUP_constant)

lemma INF_top [simp]: "(\<Sqinter>x\<in>A. \<top>) = \<top>"
  by (cases "A = {}") simp_all

lemma SUP_bot [simp]: "(\<Squnion>x\<in>A. \<bottom>) = \<bottom>"
  by (cases "A = {}") simp_all

lemma INF_commute: "(\<Sqinter>i\<in>A. \<Sqinter>j\<in>B. f i j) = (\<Sqinter>j\<in>B. \<Sqinter>i\<in>A. f i j)"
  by (iprover intro: INF_lower INF_greatest order_trans order.antisym)

lemma SUP_commute: "(\<Squnion>i\<in>A. \<Squnion>j\<in>B. f i j) = (\<Squnion>j\<in>B. \<Squnion>i\<in>A. f i j)"
  by (iprover intro: SUP_upper SUP_least order_trans order.antisym)

lemma INF_absorb:
  assumes "k \<in> I"
  shows "A k \<sqinter> (\<Sqinter>i\<in>I. A i) = (\<Sqinter>i\<in>I. A i)"
proof -
  from assms obtain J where "I = insert k J" by blast
  then show ?thesis by simp
qed

lemma SUP_absorb:
  assumes "k \<in> I"
  shows "A k \<squnion> (\<Squnion>i\<in>I. A i) = (\<Squnion>i\<in>I. A i)"
proof -
  from assms obtain J where "I = insert k J" by blast
  then show ?thesis by simp
qed

lemma INF_inf_const1: "I \<noteq> {} \<Longrightarrow> (\<Sqinter>i\<in>I. inf x (f i)) = inf x (\<Sqinter>i\<in>I. f i)"
  by (intro order.antisym INF_greatest inf_mono order_refl INF_lower)
     (auto intro: INF_lower2 le_infI2 intro!: INF_mono)

lemma INF_inf_const2: "I \<noteq> {} \<Longrightarrow> (\<Sqinter>i\<in>I. inf (f i) x) = inf (\<Sqinter>i\<in>I. f i) x"
  using INF_inf_const1[of I x f] by (simp add: inf_commute)

lemma less_INF_D:
  assumes "y < (\<Sqinter>i\<in>A. f i)" "i \<in> A"
  shows "y < f i"
proof -
  note \<open>y < (\<Sqinter>i\<in>A. f i)\<close>
  also have "(\<Sqinter>i\<in>A. f i) \<le> f i" using \<open>i \<in> A\<close>
    by (rule INF_lower)
  finally show "y < f i" .
qed

lemma SUP_lessD:
  assumes "(\<Squnion>i\<in>A. f i) < y" "i \<in> A"
  shows "f i < y"
proof -
  have "f i \<le> (\<Squnion>i\<in>A. f i)"
    using \<open>i \<in> A\<close> by (rule SUP_upper)
  also note \<open>(\<Squnion>i\<in>A. f i) < y\<close>
  finally show "f i < y" .
qed

lemma INF_UNIV_bool_expand: "(\<Sqinter>b. A b) = A True \<sqinter> A False"
  by (simp add: UNIV_bool inf_commute)

lemma SUP_UNIV_bool_expand: "(\<Squnion>b. A b) = A True \<squnion> A False"
  by (simp add: UNIV_bool sup_commute)

lemma Inf_le_Sup: "A \<noteq> {} \<Longrightarrow> Inf A \<le> Sup A"
  by (blast intro: Sup_upper2 Inf_lower ex_in_conv)

lemma INF_le_SUP: "A \<noteq> {} \<Longrightarrow> \<Sqinter>(f ` A) \<le> \<Squnion>(f ` A)"
  using Inf_le_Sup [of "f ` A"] by simp

lemma INF_eq_const: "I \<noteq> {} \<Longrightarrow> (\<And>i. i \<in> I \<Longrightarrow> f i = x) \<Longrightarrow> \<Sqinter>(f ` I) = x"
  by (auto intro: INF_eqI)

lemma SUP_eq_const: "I \<noteq> {} \<Longrightarrow> (\<And>i. i \<in> I \<Longrightarrow> f i = x) \<Longrightarrow> \<Squnion>(f ` I) = x"
  by (auto intro: SUP_eqI)

lemma INF_eq_iff: "I \<noteq> {} \<Longrightarrow> (\<And>i. i \<in> I \<Longrightarrow> f i \<le> c) \<Longrightarrow> \<Sqinter>(f ` I) = c \<longleftrightarrow> (\<forall>i\<in>I. f i = c)"
  by (auto intro: INF_eq_const INF_lower order.antisym)

lemma SUP_eq_iff: "I \<noteq> {} \<Longrightarrow> (\<And>i. i \<in> I \<Longrightarrow> c \<le> f i) \<Longrightarrow> \<Squnion>(f ` I) = c \<longleftrightarrow> (\<forall>i\<in>I. f i = c)"
  by (auto intro: SUP_eq_const SUP_upper order.antisym)

end

context complete_lattice
begin
lemma Sup_Inf_le: "Sup (Inf ` {f ` A | f . (\<forall> Y \<in> A . f Y \<in> Y)}) \<le> Inf (Sup ` A)"
  by (rule SUP_least, clarify, rule INF_greatest, simp add: INF_lower2 Sup_upper)
end 

class complete_distrib_lattice = complete_lattice +
  assumes Inf_Sup_le: "Inf (Sup ` A) \<le> Sup (Inf ` {f ` A | f . (\<forall> Y \<in> A . f Y \<in> Y)})"
begin
  
lemma Inf_Sup: "Inf (Sup ` A) = Sup (Inf ` {f ` A | f . (\<forall> Y \<in> A . f Y \<in> Y)})"
  by (rule order.antisym, rule Inf_Sup_le, rule Sup_Inf_le)

subclass distrib_lattice
proof
  fix a b c
  show "a \<squnion> b \<sqinter> c = (a \<squnion> b) \<sqinter> (a \<squnion> c)"
  proof (rule order.antisym, simp_all, safe)
    show "b \<sqinter> c \<le> a \<squnion> b"
      by (rule le_infI1, simp)
    show "b \<sqinter> c \<le> a \<squnion> c"
      by (rule le_infI2, simp)
    have [simp]: "a \<sqinter> c \<le> a \<squnion> b \<sqinter> c"
      by (rule le_infI1, simp)
    have [simp]: "b \<sqinter> a \<le> a \<squnion> b \<sqinter> c"
      by (rule le_infI2, simp)
    have "\<Sqinter>(Sup ` {{a, b}, {a, c}}) =
      \<Squnion>(Inf ` {f ` {{a, b}, {a, c}} | f. \<forall>Y\<in>{{a, b}, {a, c}}. f Y \<in> Y})"
      by (rule Inf_Sup)
    from this show "(a \<squnion> b) \<sqinter> (a \<squnion> c) \<le> a \<squnion> b \<sqinter> c"
      apply simp
      by (rule SUP_least, safe, simp_all)
  qed
qed
end

context complete_lattice
begin
context
  fixes f :: "'a \<Rightarrow> 'b::complete_lattice"
  assumes "mono f"
begin

lemma mono_Inf: "f (\<Sqinter>A) \<le> (\<Sqinter>x\<in>A. f x)"
  using \<open>mono f\<close> by (auto intro: complete_lattice_class.INF_greatest Inf_lower dest: monoD)

lemma mono_Sup: "(\<Squnion>x\<in>A. f x) \<le> f (\<Squnion>A)"
  using \<open>mono f\<close> by (auto intro: complete_lattice_class.SUP_least Sup_upper dest: monoD)

lemma mono_INF: "f (\<Sqinter>i\<in>I. A i) \<le> (\<Sqinter>x\<in>I. f (A x))"
  by (intro complete_lattice_class.INF_greatest monoD[OF \<open>mono f\<close>] INF_lower)

lemma mono_SUP: "(\<Squnion>x\<in>I. f (A x)) \<le> f (\<Squnion>i\<in>I. A i)"
  by (intro complete_lattice_class.SUP_least monoD[OF \<open>mono f\<close>] SUP_upper)

end

end

class complete_boolean_algebra = boolean_algebra + complete_distrib_lattice
begin

lemma uminus_Inf: "- (\<Sqinter>A) = \<Squnion>(uminus ` A)"
proof (rule order.antisym)
  show "- \<Sqinter>A \<le> \<Squnion>(uminus ` A)"
    by (rule compl_le_swap2, rule Inf_greatest, rule compl_le_swap2, rule Sup_upper) simp
  show "\<Squnion>(uminus ` A) \<le> - \<Sqinter>A"
    by (rule Sup_least, rule compl_le_swap1, rule Inf_lower) auto
qed

lemma uminus_INF: "- (\<Sqinter>x\<in>A. B x) = (\<Squnion>x\<in>A. - B x)"
  by (simp add: uminus_Inf image_image)

lemma uminus_Sup: "- (\<Squnion>A) = \<Sqinter>(uminus ` A)"
proof -
  have "\<Squnion>A = - \<Sqinter>(uminus ` A)"
    by (simp add: image_image uminus_INF)
  then show ?thesis by simp
qed

lemma uminus_SUP: "- (\<Squnion>x\<in>A. B x) = (\<Sqinter>x\<in>A. - B x)"
  by (simp add: uminus_Sup image_image)

end

class complete_linorder = linorder + complete_lattice
begin

lemma dual_complete_linorder:
  "class.complete_linorder Sup Inf sup (\<ge>) (>) inf \<top> \<bottom>"
  by (rule class.complete_linorder.intro, rule dual_complete_lattice, rule dual_linorder)

lemma complete_linorder_inf_min: "inf = min"
  by (auto intro: order.antisym simp add: min_def fun_eq_iff)

lemma complete_linorder_sup_max: "sup = max"
  by (auto intro: order.antisym simp add: max_def fun_eq_iff)

lemma Inf_less_iff: "\<Sqinter>S < a \<longleftrightarrow> (\<exists>x\<in>S. x < a)"
  by (simp add: not_le [symmetric] le_Inf_iff)

lemma INF_less_iff: "(\<Sqinter>i\<in>A. f i) < a \<longleftrightarrow> (\<exists>x\<in>A. f x < a)"
  by (simp add: Inf_less_iff [of "f ` A"])

lemma less_Sup_iff: "a < \<Squnion>S \<longleftrightarrow> (\<exists>x\<in>S. a < x)"
  by (simp add: not_le [symmetric] Sup_le_iff)

lemma less_SUP_iff: "a < (\<Squnion>i\<in>A. f i) \<longleftrightarrow> (\<exists>x\<in>A. a < f x)"
  by (simp add: less_Sup_iff [of _ "f ` A"])

lemma Sup_eq_top_iff [simp]: "\<Squnion>A = \<top> \<longleftrightarrow> (\<forall>x<\<top>. \<exists>i\<in>A. x < i)"
proof
  assume *: "\<Squnion>A = \<top>"
  show "(\<forall>x<\<top>. \<exists>i\<in>A. x < i)"
    unfolding * [symmetric]
  proof (intro allI impI)
    fix x
    assume "x < \<Squnion>A"
    then show "\<exists>i\<in>A. x < i"
      by (simp add: less_Sup_iff)
  qed
next
  assume *: "\<forall>x<\<top>. \<exists>i\<in>A. x < i"
  show "\<Squnion>A = \<top>"
  proof (rule ccontr)
    assume "\<Squnion>A \<noteq> \<top>"
    with top_greatest [of "\<Squnion>A"] have "\<Squnion>A < \<top>"
      unfolding le_less by auto
    with * have "\<Squnion>A < \<Squnion>A"
      unfolding less_Sup_iff by auto
    then show False by auto
  qed
qed

lemma SUP_eq_top_iff [simp]: "(\<Squnion>i\<in>A. f i) = \<top> \<longleftrightarrow> (\<forall>x<\<top>. \<exists>i\<in>A. x < f i)"
  using Sup_eq_top_iff [of "f ` A"] by simp

lemma Inf_eq_bot_iff [simp]: "\<Sqinter>A = \<bottom> \<longleftrightarrow> (\<forall>x>\<bottom>. \<exists>i\<in>A. i < x)"
  using dual_complete_linorder
  by (rule complete_linorder.Sup_eq_top_iff)

lemma INF_eq_bot_iff [simp]: "(\<Sqinter>i\<in>A. f i) = \<bottom> \<longleftrightarrow> (\<forall>x>\<bottom>. \<exists>i\<in>A. f i < x)"
  using Inf_eq_bot_iff [of "f ` A"] by simp

lemma Inf_le_iff: "\<Sqinter>A \<le> x \<longleftrightarrow> (\<forall>y>x. \<exists>a\<in>A. y > a)"
proof safe
  fix y
  assume "x \<ge> \<Sqinter>A" "y > x"
  then have "y > \<Sqinter>A" by auto
  then show "\<exists>a\<in>A. y > a"
    unfolding Inf_less_iff .
qed (auto elim!: allE[of _ "\<Sqinter>A"] simp add: not_le[symmetric] Inf_lower)

lemma INF_le_iff: "\<Sqinter>(f ` A) \<le> x \<longleftrightarrow> (\<forall>y>x. \<exists>i\<in>A. y > f i)"
  using Inf_le_iff [of "f ` A"] by simp

lemma le_Sup_iff: "x \<le> \<Squnion>A \<longleftrightarrow> (\<forall>y<x. \<exists>a\<in>A. y < a)"
proof safe
  fix y
  assume "x \<le> \<Squnion>A" "y < x"
  then have "y < \<Squnion>A" by auto
  then show "\<exists>a\<in>A. y < a"
    unfolding less_Sup_iff .
qed (auto elim!: allE[of _ "\<Squnion>A"] simp add: not_le[symmetric] Sup_upper)

lemma le_SUP_iff: "x \<le> \<Squnion>(f ` A) \<longleftrightarrow> (\<forall>y<x. \<exists>i\<in>A. y < f i)"
  using le_Sup_iff [of _ "f ` A"] by simp

end

subsection \<open>Complete lattice on \<^typ>\<open>bool\<close>\<close>

instantiation bool :: complete_lattice
begin

definition [simp, code]: "\<Sqinter>A \<longleftrightarrow> False \<notin> A"

definition [simp, code]: "\<Squnion>A \<longleftrightarrow> True \<in> A"

instance
  by standard (auto intro: bool_induct)

end

lemma not_False_in_image_Ball [simp]: "False \<notin> P ` A \<longleftrightarrow> Ball A P"
  by auto

lemma True_in_image_Bex [simp]: "True \<in> P ` A \<longleftrightarrow> Bex A P"
  by auto

lemma INF_bool_eq [simp]: "(\<lambda>A f. \<Sqinter>(f ` A)) = Ball"
  by (simp add: fun_eq_iff)

lemma SUP_bool_eq [simp]: "(\<lambda>A f. \<Squnion>(f ` A)) = Bex"
  by (simp add: fun_eq_iff)

instance bool :: complete_boolean_algebra
  by (standard, fastforce)

subsection \<open>Complete lattice on \<^typ>\<open>_ \<Rightarrow> _\<close>\<close>

instantiation "fun" :: (type, Inf) Inf
begin

definition "\<Sqinter>A = (\<lambda>x. \<Sqinter>f\<in>A. f x)"

lemma Inf_apply [simp, code]: "(\<Sqinter>A) x = (\<Sqinter>f\<in>A. f x)"
  by (simp add: Inf_fun_def)

instance ..

end

instantiation "fun" :: (type, Sup) Sup
begin

definition "\<Squnion>A = (\<lambda>x. \<Squnion>f\<in>A. f x)"

lemma Sup_apply [simp, code]: "(\<Squnion>A) x = (\<Squnion>f\<in>A. f x)"
  by (simp add: Sup_fun_def)

instance ..

end

instantiation "fun" :: (type, complete_lattice) complete_lattice
begin

instance
  by standard (auto simp add: le_fun_def intro: INF_lower INF_greatest SUP_upper SUP_least)

end

lemma INF_apply [simp]: "(\<Sqinter>y\<in>A. f y) x = (\<Sqinter>y\<in>A. f y x)"
  by (simp add: image_comp)

lemma SUP_apply [simp]: "(\<Squnion>y\<in>A. f y) x = (\<Squnion>y\<in>A. f y x)"
  by (simp add: image_comp)

subsection \<open>Complete lattice on unary and binary predicates\<close>

lemma Inf1_I: "(\<And>P. P \<in> A \<Longrightarrow> P a) \<Longrightarrow> (\<Sqinter>A) a"
  by auto

lemma INF1_I: "(\<And>x. x \<in> A \<Longrightarrow> B x b) \<Longrightarrow> (\<Sqinter>x\<in>A. B x) b"
  by simp

lemma INF2_I: "(\<And>x. x \<in> A \<Longrightarrow> B x b c) \<Longrightarrow> (\<Sqinter>x\<in>A. B x) b c"
  by simp

lemma Inf2_I: "(\<And>r. r \<in> A \<Longrightarrow> r a b) \<Longrightarrow> (\<Sqinter>A) a b"
  by auto

lemma Inf1_D: "(\<Sqinter>A) a \<Longrightarrow> P \<in> A \<Longrightarrow> P a"
  by auto

lemma INF1_D: "(\<Sqinter>x\<in>A. B x) b \<Longrightarrow> a \<in> A \<Longrightarrow> B a b"
  by simp

lemma Inf2_D: "(\<Sqinter>A) a b \<Longrightarrow> r \<in> A \<Longrightarrow> r a b"
  by auto

lemma INF2_D: "(\<Sqinter>x\<in>A. B x) b c \<Longrightarrow> a \<in> A \<Longrightarrow> B a b c"
  by simp

lemma Inf1_E:
  assumes "(\<Sqinter>A) a"
  obtains "P a" | "P \<notin> A"
  using assms by auto

lemma INF1_E:
  assumes "(\<Sqinter>x\<in>A. B x) b"
  obtains "B a b" | "a \<notin> A"
  using assms by auto

lemma Inf2_E:
  assumes "(\<Sqinter>A) a b"
  obtains "r a b" | "r \<notin> A"
  using assms by auto

lemma INF2_E:
  assumes "(\<Sqinter>x\<in>A. B x) b c"
  obtains "B a b c" | "a \<notin> A"
  using assms by auto

lemma Sup1_I: "P \<in> A \<Longrightarrow> P a \<Longrightarrow> (\<Squnion>A) a"
  by auto

lemma SUP1_I: "a \<in> A \<Longrightarrow> B a b \<Longrightarrow> (\<Squnion>x\<in>A. B x) b"
  by auto

lemma Sup2_I: "r \<in> A \<Longrightarrow> r a b \<Longrightarrow> (\<Squnion>A) a b"
  by auto

lemma SUP2_I: "a \<in> A \<Longrightarrow> B a b c \<Longrightarrow> (\<Squnion>x\<in>A. B x) b c"
  by auto

lemma Sup1_E:
  assumes "(\<Squnion>A) a"
  obtains P where "P \<in> A" and "P a"
  using assms by auto

lemma SUP1_E:
  assumes "(\<Squnion>x\<in>A. B x) b"
  obtains x where "x \<in> A" and "B x b"
  using assms by auto

lemma Sup2_E:
  assumes "(\<Squnion>A) a b"
  obtains r where "r \<in> A" "r a b"
  using assms by auto

lemma SUP2_E:
  assumes "(\<Squnion>x\<in>A. B x) b c"
  obtains x where "x \<in> A" "B x b c"
  using assms by auto


subsection \<open>Complete lattice on \<^typ>\<open>_ set\<close>\<close>

instantiation "set" :: (type) complete_lattice
begin

definition "\<Sqinter>A = {x. \<Sqinter>((\<lambda>B. x \<in> B) ` A)}"

definition "\<Squnion>A = {x. \<Squnion>((\<lambda>B. x \<in> B) ` A)}"

instance
  by standard (auto simp add: less_eq_set_def Inf_set_def Sup_set_def le_fun_def)

end

subsubsection \<open>Inter\<close>

abbreviation Inter :: "'a set set \<Rightarrow> 'a set"  (\<open>\<Inter>\<close>)
  where "\<Inter>S \<equiv> \<Sqinter>S"

lemma Inter_eq: "\<Inter>A = {x. \<forall>B \<in> A. x \<in> B}"
proof (rule set_eqI)
  fix x
  have "(\<forall>Q\<in>{P. \<exists>B\<in>A. P \<longleftrightarrow> x \<in> B}. Q) \<longleftrightarrow> (\<forall>B\<in>A. x \<in> B)"
    by auto
  then show "x \<in> \<Inter>A \<longleftrightarrow> x \<in> {x. \<forall>B \<in> A. x \<in> B}"
    by (simp add: Inf_set_def image_def)
qed

lemma Inter_iff [simp]: "A \<in> \<Inter>C \<longleftrightarrow> (\<forall>X\<in>C. A \<in> X)"
  by (unfold Inter_eq) blast

lemma InterI [intro!]: "(\<And>X. X \<in> C \<Longrightarrow> A \<in> X) \<Longrightarrow> A \<in> \<Inter>C"
  by (simp add: Inter_eq)

text \<open>
  \<^medskip> A ``destruct'' rule -- every \<^term>\<open>X\<close> in \<^term>\<open>C\<close>
  contains \<^term>\<open>A\<close> as an element, but \<^prop>\<open>A \<in> X\<close> can hold when
  \<^prop>\<open>X \<in> C\<close> does not!  This rule is analogous to \<open>spec\<close>.
\<close>

lemma InterD [elim, Pure.elim]: "A \<in> \<Inter>C \<Longrightarrow> X \<in> C \<Longrightarrow> A \<in> X"
  by auto

lemma InterE [elim]: "A \<in> \<Inter>C \<Longrightarrow> (X \<notin> C \<Longrightarrow> R) \<Longrightarrow> (A \<in> X \<Longrightarrow> R) \<Longrightarrow> R"
  \<comment> \<open>``Classical'' elimination rule -- does not require proving
    \<^prop>\<open>X \<in> C\<close>.\<close>
  unfolding Inter_eq by blast

lemma Inter_lower: "B \<in> A \<Longrightarrow> \<Inter>A \<subseteq> B"
  by (fact Inf_lower)

lemma Inter_subset: "(\<And>X. X \<in> A \<Longrightarrow> X \<subseteq> B) \<Longrightarrow> A \<noteq> {} \<Longrightarrow> \<Inter>A \<subseteq> B"
  by (fact Inf_less_eq)

lemma Inter_greatest: "(\<And>X. X \<in> A \<Longrightarrow> C \<subseteq> X) \<Longrightarrow> C \<subseteq> \<Inter>A"
  by (fact Inf_greatest)

lemma Inter_empty: "\<Inter>{} = UNIV"
  by (fact Inf_empty) (* already simp *)

lemma Inter_UNIV: "\<Inter>UNIV = {}"
  by (fact Inf_UNIV) (* already simp *)

lemma Inter_insert: "\<Inter>(insert a B) = a \<inter> \<Inter>B"
  by (fact Inf_insert) (* already simp *)

lemma Inter_Un_subset: "\<Inter>A \<union> \<Inter>B \<subseteq> \<Inter>(A \<inter> B)"
  by (fact less_eq_Inf_inter)

lemma Inter_Un_distrib: "\<Inter>(A \<union> B) = \<Inter>A \<inter> \<Inter>B"
  by (fact Inf_union_distrib)

lemma Inter_UNIV_conv [simp]:
  "\<Inter>A = UNIV \<longleftrightarrow> (\<forall>x\<in>A. x = UNIV)"
  "UNIV = \<Inter>A \<longleftrightarrow> (\<forall>x\<in>A. x = UNIV)"
  by (fact Inf_top_conv)+

lemma Inter_anti_mono: "B \<subseteq> A \<Longrightarrow> \<Inter>A \<subseteq> \<Inter>B"
  by (fact Inf_superset_mono)


subsubsection \<open>Intersections of families\<close>

syntax (ASCII)
  "_INTER1"     :: "pttrns \<Rightarrow> 'b set \<Rightarrow> 'b set"           (\<open>(\<open>indent=3 notation=\<open>binder INT\<close>\<close>INT _./ _)\<close> [0, 10] 10)
  "_INTER"      :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b set \<Rightarrow> 'b set"  (\<open>(\<open>indent=3 notation=\<open>binder INT\<close>\<close>INT _:_./ _)\<close> [0, 0, 10] 10)

syntax
  "_INTER1"     :: "pttrns \<Rightarrow> 'b set \<Rightarrow> 'b set"           (\<open>(\<open>indent=3 notation=\<open>binder \<Inter>\<close>\<close>\<Inter>_./ _)\<close> [0, 10] 10)
  "_INTER"      :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b set \<Rightarrow> 'b set"  (\<open>(\<open>indent=3 notation=\<open>binder \<Inter>\<close>\<close>\<Inter>_\<in>_./ _)\<close> [0, 0, 10] 10)

syntax (latex output)
  "_INTER1"     :: "pttrns \<Rightarrow> 'b set \<Rightarrow> 'b set"           (\<open>(3\<Inter>(\<open>unbreakable\<close>\<^bsub>_\<^esub>)/ _)\<close> [0, 10] 10)
  "_INTER"      :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b set \<Rightarrow> 'b set"  (\<open>(3\<Inter>(\<open>unbreakable\<close>\<^bsub>_\<in>_\<^esub>)/ _)\<close> [0, 0, 10] 10)

syntax_consts
  "_INTER1" "_INTER" \<rightleftharpoons> Inter

translations
  "\<Inter>x y. f"  \<rightleftharpoons> "\<Inter>x. \<Inter>y. f"
  "\<Inter>x. f"    \<rightleftharpoons> "\<Inter>(CONST range (\<lambda>x. f))"
  "\<Inter>x\<in>A. f"  \<rightleftharpoons> "CONST Inter ((\<lambda>x. f) ` A)"

lemma INTER_eq: "(\<Inter>x\<in>A. B x) = {y. \<forall>x\<in>A. y \<in> B x}"
  by (auto intro!: INF_eqI)

lemma INT_iff [simp]: "b \<in> (\<Inter>x\<in>A. B x) \<longleftrightarrow> (\<forall>x\<in>A. b \<in> B x)"
  using Inter_iff [of _ "B ` A"] by simp

lemma INT_I [intro!]: "(\<And>x. x \<in> A \<Longrightarrow> b \<in> B x) \<Longrightarrow> b \<in> (\<Inter>x\<in>A. B x)"
  by auto

lemma INT_D [elim, Pure.elim]: "b \<in> (\<Inter>x\<in>A. B x) \<Longrightarrow> a \<in> A \<Longrightarrow> b \<in> B a"
  by auto

lemma INT_E [elim]: "b \<in> (\<Inter>x\<in>A. B x) \<Longrightarrow> (b \<in> B a \<Longrightarrow> R) \<Longrightarrow> (a \<notin> A \<Longrightarrow> R) \<Longrightarrow> R"
  \<comment> \<open>"Classical" elimination -- by the Excluded Middle on \<^prop>\<open>a\<in>A\<close>.\<close>
  by auto

lemma Collect_ball_eq: "{x. \<forall>y\<in>A. P x y} = (\<Inter>y\<in>A. {x. P x y})"
  by blast

lemma Collect_all_eq: "{x. \<forall>y. P x y} = (\<Inter>y. {x. P x y})"
  by blast

lemma INT_lower: "a \<in> A \<Longrightarrow> (\<Inter>x\<in>A. B x) \<subseteq> B a"
  by (fact INF_lower)

lemma INT_greatest: "(\<And>x. x \<in> A \<Longrightarrow> C \<subseteq> B x) \<Longrightarrow> C \<subseteq> (\<Inter>x\<in>A. B x)"
  by (fact INF_greatest)

lemma INT_empty: "(\<Inter>x\<in>{}. B x) = UNIV"
  by (fact INF_empty)

lemma INT_absorb: "k \<in> I \<Longrightarrow> A k \<inter> (\<Inter>i\<in>I. A i) = (\<Inter>i\<in>I. A i)"
  by (fact INF_absorb)

lemma INT_subset_iff: "B \<subseteq> (\<Inter>i\<in>I. A i) \<longleftrightarrow> (\<forall>i\<in>I. B \<subseteq> A i)"
  by (fact le_INF_iff)

lemma INT_insert [simp]: "(\<Inter>x \<in> insert a A. B x) = B a \<inter> \<Inter> (B ` A)"
  by (fact INF_insert)

lemma INT_Un: "(\<Inter>i \<in> A \<union> B. M i) = (\<Inter>i \<in> A. M i) \<inter> (\<Inter>i\<in>B. M i)"
  by (fact INF_union)

lemma INT_insert_distrib: "u \<in> A \<Longrightarrow> (\<Inter>x\<in>A. insert a (B x)) = insert a (\<Inter>x\<in>A. B x)"
  by blast

lemma INT_constant [simp]: "(\<Inter>y\<in>A. c) = (if A = {} then UNIV else c)"
  by (fact INF_constant)

lemma INTER_UNIV_conv:
  "(UNIV = (\<Inter>x\<in>A. B x)) = (\<forall>x\<in>A. B x = UNIV)"
  "((\<Inter>x\<in>A. B x) = UNIV) = (\<forall>x\<in>A. B x = UNIV)"
  by (fact INF_top_conv)+ (* already simp *)

lemma INT_bool_eq: "(\<Inter>b. A b) = A True \<inter> A False"
  by (fact INF_UNIV_bool_expand)

lemma INT_anti_mono: "A \<subseteq> B \<Longrightarrow> (\<And>x. x \<in> A \<Longrightarrow> f x \<subseteq> g x) \<Longrightarrow> (\<Inter>x\<in>B. f x) \<subseteq> (\<Inter>x\<in>A. g x)"
  \<comment> \<open>The last inclusion is POSITIVE!\<close>
  by (fact INF_superset_mono)

lemma Pow_INT_eq: "Pow (\<Inter>x\<in>A. B x) = (\<Inter>x\<in>A. Pow (B x))"
  by blast

lemma vimage_INT: "f -` (\<Inter>x\<in>A. B x) = (\<Inter>x\<in>A. f -` B x)"
  by blast


subsubsection \<open>Union\<close>

abbreviation Union :: "'a set set \<Rightarrow> 'a set"  (\<open>\<Union>\<close>)
  where "\<Union>S \<equiv> \<Squnion>S"

lemma Union_eq: "\<Union>A = {x. \<exists>B \<in> A. x \<in> B}"
proof (rule set_eqI)
  fix x
  have "(\<exists>Q\<in>{P. \<exists>B\<in>A. P \<longleftrightarrow> x \<in> B}. Q) \<longleftrightarrow> (\<exists>B\<in>A. x \<in> B)"
    by auto
  then show "x \<in> \<Union>A \<longleftrightarrow> x \<in> {x. \<exists>B\<in>A. x \<in> B}"
    by (simp add: Sup_set_def image_def)
qed

lemma Union_iff [simp]: "A \<in> \<Union>C \<longleftrightarrow> (\<exists>X\<in>C. A\<in>X)"
  by (unfold Union_eq) blast

lemma UnionI [intro]: "X \<in> C \<Longrightarrow> A \<in> X \<Longrightarrow> A \<in> \<Union>C"
  \<comment> \<open>The order of the premises presupposes that \<^term>\<open>C\<close> is rigid;
    \<^term>\<open>A\<close> may be flexible.\<close>
  by auto

lemma UnionE [elim!]: "A \<in> \<Union>C \<Longrightarrow> (\<And>X. A \<in> X \<Longrightarrow> X \<in> C \<Longrightarrow> R) \<Longrightarrow> R"
  by auto

lemma Union_upper: "B \<in> A \<Longrightarrow> B \<subseteq> \<Union>A"
  by (fact Sup_upper)

lemma Union_least: "(\<And>X. X \<in> A \<Longrightarrow> X \<subseteq> C) \<Longrightarrow> \<Union>A \<subseteq> C"
  by (fact Sup_least)

lemma Union_empty: "\<Union>{} = {}"
  by (fact Sup_empty) (* already simp *)

lemma Union_UNIV: "\<Union>UNIV = UNIV"
  by (fact Sup_UNIV) (* already simp *)

lemma Union_insert: "\<Union>(insert a B) = a \<union> \<Union>B"
  by (fact Sup_insert) (* already simp *)

lemma Union_Un_distrib [simp]: "\<Union>(A \<union> B) = \<Union>A \<union> \<Union>B"
  by (fact Sup_union_distrib)

lemma Union_Int_subset: "\<Union>(A \<inter> B) \<subseteq> \<Union>A \<inter> \<Union>B"
  by (fact Sup_inter_less_eq)

lemma Union_empty_conv: "(\<Union>A = {}) \<longleftrightarrow> (\<forall>x\<in>A. x = {})"
  by (fact Sup_bot_conv) (* already simp *)

lemma empty_Union_conv: "({} = \<Union>A) \<longleftrightarrow> (\<forall>x\<in>A. x = {})"
  by (fact Sup_bot_conv) (* already simp *)

lemma subset_Pow_Union: "A \<subseteq> Pow (\<Union>A)"
  by blast

lemma Union_Pow_eq [simp]: "\<Union>(Pow A) = A"
  by blast

lemma Union_mono: "A \<subseteq> B \<Longrightarrow> \<Union>A \<subseteq> \<Union>B"
  by (fact Sup_subset_mono)

lemma Union_subsetI: "(\<And>x. x \<in> A \<Longrightarrow> \<exists>y. y \<in> B \<and> x \<subseteq> y) \<Longrightarrow> \<Union>A \<subseteq> \<Union>B"
  by blast

lemma disjnt_inj_on_iff:
 "\<lbrakk>inj_on f (\<Union>\<A>); X \<in> \<A>; Y \<in> \<A>\<rbrakk> \<Longrightarrow> disjnt (f ` X) (f ` Y) \<longleftrightarrow> disjnt X Y"
  unfolding disjnt_def
  by safe (use inj_on_eq_iff in \<open>fastforce+\<close>)

lemma disjnt_Union1 [simp]: "disjnt (\<Union>\<A>) B \<longleftrightarrow> (\<forall>A \<in> \<A>. disjnt A B)"
  by (auto simp: disjnt_def)

lemma disjnt_Union2 [simp]: "disjnt B (\<Union>\<A>) \<longleftrightarrow> (\<forall>A \<in> \<A>. disjnt B A)"
  by (auto simp: disjnt_def)


subsubsection \<open>Unions of families\<close>

syntax (ASCII)
  "_UNION1"     :: "pttrns => 'b set => 'b set"           (\<open>(\<open>indent=3 notation=\<open>binder UN\<close>\<close>UN _./ _)\<close> [0, 10] 10)
  "_UNION"      :: "pttrn => 'a set => 'b set => 'b set"  (\<open>(\<open>indent=3 notation=\<open>binder UN\<close>\<close>UN _:_./ _)\<close> [0, 0, 10] 10)

syntax
  "_UNION1"     :: "pttrns => 'b set => 'b set"           (\<open>(\<open>indent=3 notation=\<open>binder \<Union>\<close>\<close>\<Union>_./ _)\<close> [0, 10] 10)
  "_UNION"      :: "pttrn => 'a set => 'b set => 'b set"  (\<open>(\<open>indent=3 notation=\<open>binder \<Union>\<close>\<close>\<Union>_\<in>_./ _)\<close> [0, 0, 10] 10)

syntax (latex output)
  "_UNION1"     :: "pttrns => 'b set => 'b set"           (\<open>(3\<Union>(\<open>unbreakable\<close>\<^bsub>_\<^esub>)/ _)\<close> [0, 10] 10)
  "_UNION"      :: "pttrn => 'a set => 'b set => 'b set"  (\<open>(3\<Union>(\<open>unbreakable\<close>\<^bsub>_\<in>_\<^esub>)/ _)\<close> [0, 0, 10] 10)

syntax_consts
  "_UNION1" "_UNION" \<rightleftharpoons> Union

translations
  "\<Union>x y. f"   \<rightleftharpoons> "\<Union>x. \<Union>y. f"
  "\<Union>x. f"     \<rightleftharpoons> "\<Union>(CONST range (\<lambda>x. f))"
  "\<Union>x\<in>A. f"   \<rightleftharpoons> "CONST Union ((\<lambda>x. f) ` A)"

text \<open>
  Note the difference between ordinary syntax of indexed
  unions and intersections (e.g.\ \<open>\<Union>a\<^sub>1\<in>A\<^sub>1. B\<close>)
  and their \LaTeX\ rendition: \<^term>\<open>\<Union>a\<^sub>1\<in>A\<^sub>1. B\<close>.
\<close>

lemma disjoint_UN_iff: "disjnt A (\<Union>i\<in>I. B i) \<longleftrightarrow> (\<forall>i\<in>I. disjnt A (B i))"
  by (auto simp: disjnt_def)

lemma UNION_eq: "(\<Union>x\<in>A. B x) = {y. \<exists>x\<in>A. y \<in> B x}"
  by (auto intro!: SUP_eqI)

lemma bind_UNION [code]: "Set.bind A f = \<Union>(f ` A)"
  by (simp add: bind_def UNION_eq)

lemma member_bind [simp]: "x \<in> Set.bind A f \<longleftrightarrow> x \<in> \<Union>(f ` A)"
  by (simp add: bind_UNION)

lemma Union_SetCompr_eq: "\<Union>{f x| x. P x} = {a. \<exists>x. P x \<and> a \<in> f x}"
  by blast

lemma UN_iff [simp]: "b \<in> (\<Union>x\<in>A. B x) \<longleftrightarrow> (\<exists>x\<in>A. b \<in> B x)"
  using Union_iff [of _ "B ` A"] by simp

lemma UN_I [intro]: "a \<in> A \<Longrightarrow> b \<in> B a \<Longrightarrow> b \<in> (\<Union>x\<in>A. B x)"
  \<comment> \<open>The order of the premises presupposes that \<^term>\<open>A\<close> is rigid;
    \<^term>\<open>b\<close> may be flexible.\<close>
  by auto

lemma UN_E [elim!]: "b \<in> (\<Union>x\<in>A. B x) \<Longrightarrow> (\<And>x. x\<in>A \<Longrightarrow> b \<in> B x \<Longrightarrow> R) \<Longrightarrow> R"
  by auto

lemma UN_upper: "a \<in> A \<Longrightarrow> B a \<subseteq> (\<Union>x\<in>A. B x)"
  by (fact SUP_upper)

lemma UN_least: "(\<And>x. x \<in> A \<Longrightarrow> B x \<subseteq> C) \<Longrightarrow> (\<Union>x\<in>A. B x) \<subseteq> C"
  by (fact SUP_least)

lemma Collect_bex_eq: "{x. \<exists>y\<in>A. P x y} = (\<Union>y\<in>A. {x. P x y})"
  by blast

lemma UN_insert_distrib: "u \<in> A \<Longrightarrow> (\<Union>x\<in>A. insert a (B x)) = insert a (\<Union>x\<in>A. B x)"
  by blast

lemma UN_empty: "(\<Union>x\<in>{}. B x) = {}"
  by (fact SUP_empty)

lemma UN_empty2: "(\<Union>x\<in>A. {}) = {}"
  by (fact SUP_bot) (* already simp *)

lemma UN_absorb: "k \<in> I \<Longrightarrow> A k \<union> (\<Union>i\<in>I. A i) = (\<Union>i\<in>I. A i)"
  by (fact SUP_absorb)

lemma UN_insert [simp]: "(\<Union>x\<in>insert a A. B x) = B a \<union> \<Union>(B ` A)"
  by (fact SUP_insert)

lemma UN_Un [simp]: "(\<Union>i \<in> A \<union> B. M i) = (\<Union>i\<in>A. M i) \<union> (\<Union>i\<in>B. M i)"
  by (fact SUP_union)

lemma UN_UN_flatten: "(\<Union>x \<in> (\<Union>y\<in>A. B y). C x) = (\<Union>y\<in>A. \<Union>x\<in>B y. C x)"
  by blast

lemma UN_subset_iff: "((\<Union>i\<in>I. A i) \<subseteq> B) = (\<forall>i\<in>I. A i \<subseteq> B)"
  by (fact SUP_le_iff)

lemma UN_constant [simp]: "(\<Union>y\<in>A. c) = (if A = {} then {} else c)"
  by (fact SUP_constant)

lemma UNION_singleton_eq_range: "(\<Union>x\<in>A. {f x}) = f ` A"
  by blast

lemma image_Union: "f ` \<Union>S = (\<Union>x\<in>S. f ` x)"
  by blast

lemma UNION_empty_conv:
  "{} = (\<Union>x\<in>A. B x) \<longleftrightarrow> (\<forall>x\<in>A. B x = {})"
  "(\<Union>x\<in>A. B x) = {} \<longleftrightarrow> (\<forall>x\<in>A. B x = {})"
  by (fact SUP_bot_conv)+ (* already simp *)

lemma Collect_ex_eq: "{x. \<exists>y. P x y} = (\<Union>y. {x. P x y})"
  by blast

lemma ball_UN: "(\<forall>z \<in> \<Union>(B ` A). P z) \<longleftrightarrow> (\<forall>x\<in>A. \<forall>z \<in> B x. P z)"
  by blast

lemma bex_UN: "(\<exists>z \<in> \<Union>(B ` A). P z) \<longleftrightarrow> (\<exists>x\<in>A. \<exists>z\<in>B x. P z)"
  by blast

lemma Un_eq_UN: "A \<union> B = (\<Union>b. if b then A else B)"
  by safe (auto simp add: if_split_mem2)

lemma UN_bool_eq: "(\<Union>b. A b) = (A True \<union> A False)"
  by (fact SUP_UNIV_bool_expand)

lemma UN_Pow_subset: "(\<Union>x\<in>A. Pow (B x)) \<subseteq> Pow (\<Union>x\<in>A. B x)"
  by blast

lemma UN_mono:
  "A \<subseteq> B \<Longrightarrow> (\<And>x. x \<in> A \<Longrightarrow> f x \<subseteq> g x) \<Longrightarrow>
    (\<Union>x\<in>A. f x) \<subseteq> (\<Union>x\<in>B. g x)"
  by (fact SUP_subset_mono)

lemma vimage_Union: "f -` (\<Union>A) = (\<Union>X\<in>A. f -` X)"
  by blast

lemma vimage_UN: "f -` (\<Union>x\<in>A. B x) = (\<Union>x\<in>A. f -` B x)"
  by blast

lemma vimage_eq_UN: "f -` B = (\<Union>y\<in>B. f -` {y})"
  \<comment> \<open>NOT suitable for rewriting\<close>
  by blast

lemma image_UN: "f ` \<Union>(B ` A) = (\<Union>x\<in>A. f ` B x)"
  by blast

lemma UN_singleton [simp]: "(\<Union>x\<in>A. {x}) = A"
  by blast

lemma inj_on_image: "inj_on f (\<Union>A) \<Longrightarrow> inj_on ((`) f) A"
  unfolding inj_on_def by blast


subsubsection \<open>Distributive laws\<close>

lemma Int_Union: "A \<inter> \<Union>B = (\<Union>C\<in>B. A \<inter> C)"
  by blast

lemma Un_Inter: "A \<union> \<Inter>B = (\<Inter>C\<in>B. A \<union> C)"
  by blast

lemma Int_Union2: "\<Union>B \<inter> A = (\<Union>C\<in>B. C \<inter> A)"
  by blast

lemma INT_Int_distrib: "(\<Inter>i\<in>I. A i \<inter> B i) = (\<Inter>i\<in>I. A i) \<inter> (\<Inter>i\<in>I. B i)"
  by (rule sym) (rule INF_inf_distrib)

lemma UN_Un_distrib: "(\<Union>i\<in>I. A i \<union> B i) = (\<Union>i\<in>I. A i) \<union> (\<Union>i\<in>I. B i)"
  by (rule sym) (rule SUP_sup_distrib)

lemma Int_Inter_image: "(\<Inter>x\<in>C. A x \<inter> B x) = \<Inter>(A ` C) \<inter> \<Inter>(B ` C)"  (* FIXME drop *)
  by (simp add: INT_Int_distrib)

lemma Int_Inter_eq: "A \<inter> \<Inter>\<B> = (if \<B>={} then A else (\<Inter>B\<in>\<B>. A \<inter> B))"
                    "\<Inter>\<B> \<inter> A = (if \<B>={} then A else (\<Inter>B\<in>\<B>. B \<inter> A))"
  by auto

lemma Un_Union_image: "(\<Union>x\<in>C. A x \<union> B x) = \<Union>(A ` C) \<union> \<Union>(B ` C)"  (* FIXME drop *)
  \<comment> \<open>Devlin, Fundamentals of Contemporary Set Theory, page 12, exercise 5:\<close>
  \<comment> \<open>Union of a family of unions\<close>
  by (simp add: UN_Un_distrib)

lemma Un_INT_distrib: "B \<union> (\<Inter>i\<in>I. A i) = (\<Inter>i\<in>I. B \<union> A i)"
  by blast

lemma Int_UN_distrib: "B \<inter> (\<Union>i\<in>I. A i) = (\<Union>i\<in>I. B \<inter> A i)"
  \<comment> \<open>Halmos, Naive Set Theory, page 35.\<close>
  by blast

lemma Int_UN_distrib2: "(\<Union>i\<in>I. A i) \<inter> (\<Union>j\<in>J. B j) = (\<Union>i\<in>I. \<Union>j\<in>J. A i \<inter> B j)"
  by blast

lemma Un_INT_distrib2: "(\<Inter>i\<in>I. A i) \<union> (\<Inter>j\<in>J. B j) = (\<Inter>i\<in>I. \<Inter>j\<in>J. A i \<union> B j)"
  by blast

lemma Union_disjoint: "(\<Union>C \<inter> A = {}) \<longleftrightarrow> (\<forall>B\<in>C. B \<inter> A = {})"
  by blast

lemma SUP_UNION: "(\<Squnion>x\<in>(\<Union>y\<in>A. g y). f x) = (\<Squnion>y\<in>A. \<Squnion>x\<in>g y. f x :: _ :: complete_lattice)"
  by (rule order_antisym) (blast intro: SUP_least SUP_upper2)+


subsection \<open>Injections and bijections\<close>

lemma inj_on_Inter: "S \<noteq> {} \<Longrightarrow> (\<And>A. A \<in> S \<Longrightarrow> inj_on f A) \<Longrightarrow> inj_on f (\<Inter>S)"
  unfolding inj_on_def by blast

lemma inj_on_INTER: "I \<noteq> {} \<Longrightarrow> (\<And>i. i \<in> I \<Longrightarrow> inj_on f (A i)) \<Longrightarrow> inj_on f (\<Inter>i \<in> I. A i)"
  unfolding inj_on_def by safe simp

lemma inj_on_UNION_chain:
  assumes chain: "\<And>i j. i \<in> I \<Longrightarrow> j \<in> I \<Longrightarrow> A i \<le> A j \<or> A j \<le> A i"
    and inj: "\<And>i. i \<in> I \<Longrightarrow> inj_on f (A i)"
  shows "inj_on f (\<Union>i \<in> I. A i)"
proof -
  have "x = y"
    if *: "i \<in> I" "j \<in> I"
    and **: "x \<in> A i" "y \<in> A j"
    and ***: "f x = f y"
    for i j x y
    using chain [OF *]
  proof
    assume "A i \<le> A j"
    with ** have "x \<in> A j" by auto
    with inj * ** *** show ?thesis
      by (auto simp add: inj_on_def)
  next
    assume "A j \<le> A i"
    with ** have "y \<in> A i" by auto
    with inj * ** *** show ?thesis
      by (auto simp add: inj_on_def)
  qed
  then show ?thesis
    by (unfold inj_on_def UNION_eq) auto
qed

lemma bij_betw_UNION_chain:
  assumes chain: "\<And>i j. i \<in> I \<Longrightarrow> j \<in> I \<Longrightarrow> A i \<le> A j \<or> A j \<le> A i"
    and bij: "\<And>i. i \<in> I \<Longrightarrow> bij_betw f (A i) (A' i)"
  shows "bij_betw f (\<Union>i \<in> I. A i) (\<Union>i \<in> I. A' i)"
  unfolding bij_betw_def
proof safe
  have "\<And>i. i \<in> I \<Longrightarrow> inj_on f (A i)"
    using bij bij_betw_def[of f] by auto
  then show "inj_on f (\<Union>(A ` I))"
    using chain inj_on_UNION_chain[of I A f] by auto
next
  fix i x
  assume *: "i \<in> I" "x \<in> A i"
  with bij have "f x \<in> A' i"
    by (auto simp: bij_betw_def)
  with * show "f x \<in> \<Union>(A' ` I)" by blast
next
  fix i x'
  assume *: "i \<in> I" "x' \<in> A' i"
  with bij have "\<exists>x \<in> A i. x' = f x"
    unfolding bij_betw_def by blast
  with * have "\<exists>j \<in> I. \<exists>x \<in> A j. x' = f x"
    by blast
  then show "x' \<in> f ` \<Union>(A ` I)"
    by blast
qed

(*injectivity's required.  Left-to-right inclusion holds even if A is empty*)
lemma image_INT: "inj_on f C \<Longrightarrow> \<forall>x\<in>A. B x \<subseteq> C \<Longrightarrow> j \<in> A \<Longrightarrow> f ` (\<Inter>(B ` A)) = (\<Inter>x\<in>A. f ` B x)"
  by (auto simp add: inj_on_def) blast

lemma bij_image_INT: "bij f \<Longrightarrow> f ` (\<Inter>(B ` A)) = (\<Inter>x\<in>A. f ` B x)"
  by (auto simp: bij_def inj_def surj_def) blast

lemma UNION_fun_upd: "\<Union>(A(i := B) ` J) = \<Union>(A ` (J - {i})) \<union> (if i \<in> J then B else {})"
  by (auto simp add: set_eq_iff)

lemma bij_betw_Pow:
  assumes "bij_betw f A B"
  shows "bij_betw (image f) (Pow A) (Pow B)"
proof -
  from assms have "inj_on f A"
    by (rule bij_betw_imp_inj_on)
  then have "inj_on f (\<Union>(Pow A))"
    by simp
  then have "inj_on (image f) (Pow A)"
    by (rule inj_on_image)
  then have "bij_betw (image f) (Pow A) (image f ` Pow A)"
    by (rule inj_on_imp_bij_betw)
  moreover from assms have "f ` A = B"
    by (rule bij_betw_imp_surj_on)
  then have "image f ` Pow A = Pow B"
    by (rule image_Pow_surj)
  ultimately show ?thesis by simp
qed


subsubsection \<open>Complement\<close>

lemma Compl_INT [simp]: "- (\<Inter>x\<in>A. B x) = (\<Union>x\<in>A. -B x)"
  by blast

lemma Compl_UN [simp]: "- (\<Union>x\<in>A. B x) = (\<Inter>x\<in>A. -B x)"
  by blast

subsubsection \<open>Miniscoping and maxiscoping\<close>

text \<open>\<^medskip> Miniscoping: pushing in quantifiers and big Unions and Intersections.\<close>

lemma UN_simps [simp]:
  "\<And>a B C. (\<Union>x\<in>C. insert a (B x)) = (if C={} then {} else insert a (\<Union>x\<in>C. B x))"
  "\<And>A B C. (\<Union>x\<in>C. A x \<union> B) = ((if C={} then {} else (\<Union>x\<in>C. A x) \<union> B))"
  "\<And>A B C. (\<Union>x\<in>C. A \<union> B x) = ((if C={} then {} else A \<union> (\<Union>x\<in>C. B x)))"
  "\<And>A B C. (\<Union>x\<in>C. A x \<inter> B) = ((\<Union>x\<in>C. A x) \<inter> B)"
  "\<And>A B C. (\<Union>x\<in>C. A \<inter> B x) = (A \<inter>(\<Union>x\<in>C. B x))"
  "\<And>A B C. (\<Union>x\<in>C. A x - B) = ((\<Union>x\<in>C. A x) - B)"
  "\<And>A B C. (\<Union>x\<in>C. A - B x) = (A - (\<Inter>x\<in>C. B x))"
  "\<And>A B. (\<Union>x\<in>\<Union>A. B x) = (\<Union>y\<in>A. \<Union>x\<in>y. B x)"
  "\<And>A B C. (\<Union>z\<in>(\<Union>(B ` A)). C z) = (\<Union>x\<in>A. \<Union>z\<in>B x. C z)"
  "\<And>A B f. (\<Union>x\<in>f`A. B x) = (\<Union>a\<in>A. B (f a))"
  by auto

lemma INT_simps [simp]:
  "\<And>A B C. (\<Inter>x\<in>C. A x \<inter> B) = (if C={} then UNIV else (\<Inter>x\<in>C. A x) \<inter> B)"
  "\<And>A B C. (\<Inter>x\<in>C. A \<inter> B x) = (if C={} then UNIV else A \<inter>(\<Inter>x\<in>C. B x))"
  "\<And>A B C. (\<Inter>x\<in>C. A x - B) = (if C={} then UNIV else (\<Inter>x\<in>C. A x) - B)"
  "\<And>A B C. (\<Inter>x\<in>C. A - B x) = (if C={} then UNIV else A - (\<Union>x\<in>C. B x))"
  "\<And>a B C. (\<Inter>x\<in>C. insert a (B x)) = insert a (\<Inter>x\<in>C. B x)"
  "\<And>A B C. (\<Inter>x\<in>C. A x \<union> B) = ((\<Inter>x\<in>C. A x) \<union> B)"
  "\<And>A B C. (\<Inter>x\<in>C. A \<union> B x) = (A \<union> (\<Inter>x\<in>C. B x))"
  "\<And>A B. (\<Inter>x\<in>\<Union>A. B x) = (\<Inter>y\<in>A. \<Inter>x\<in>y. B x)"
  "\<And>A B C. (\<Inter>z\<in>(\<Union>(B ` A)). C z) = (\<Inter>x\<in>A. \<Inter>z\<in>B x. C z)"
  "\<And>A B f. (\<Inter>x\<in>f`A. B x) = (\<Inter>a\<in>A. B (f a))"
  by auto

lemma UN_ball_bex_simps [simp]:
  "\<And>A P. (\<forall>x\<in>\<Union>A. P x) \<longleftrightarrow> (\<forall>y\<in>A. \<forall>x\<in>y. P x)"
  "\<And>A B P. (\<forall>x\<in>(\<Union>(B ` A)). P x) = (\<forall>a\<in>A. \<forall>x\<in> B a. P x)"
  "\<And>A P. (\<exists>x\<in>\<Union>A. P x) \<longleftrightarrow> (\<exists>y\<in>A. \<exists>x\<in>y. P x)"
  "\<And>A B P. (\<exists>x\<in>(\<Union>(B ` A)). P x) \<longleftrightarrow> (\<exists>a\<in>A. \<exists>x\<in>B a. P x)"
  by auto


text \<open>\<^medskip> Maxiscoping: pulling out big Unions and Intersections.\<close>

lemma UN_extend_simps:
  "\<And>a B C. insert a (\<Union>x\<in>C. B x) = (if C={} then {a} else (\<Union>x\<in>C. insert a (B x)))"
  "\<And>A B C. (\<Union>x\<in>C. A x) \<union> B = (if C={} then B else (\<Union>x\<in>C. A x \<union> B))"
  "\<And>A B C. A \<union> (\<Union>x\<in>C. B x) = (if C={} then A else (\<Union>x\<in>C. A \<union> B x))"
  "\<And>A B C. ((\<Union>x\<in>C. A x) \<inter> B) = (\<Union>x\<in>C. A x \<inter> B)"
  "\<And>A B C. (A \<inter> (\<Union>x\<in>C. B x)) = (\<Union>x\<in>C. A \<inter> B x)"
  "\<And>A B C. ((\<Union>x\<in>C. A x) - B) = (\<Union>x\<in>C. A x - B)"
  "\<And>A B C. (A - (\<Inter>x\<in>C. B x)) = (\<Union>x\<in>C. A - B x)"
  "\<And>A B. (\<Union>y\<in>A. \<Union>x\<in>y. B x) = (\<Union>x\<in>\<Union>A. B x)"
  "\<And>A B C. (\<Union>x\<in>A. \<Union>z\<in>B x. C z) = (\<Union>z\<in>(\<Union>(B ` A)). C z)"
  "\<And>A B f. (\<Union>a\<in>A. B (f a)) = (\<Union>x\<in>f`A. B x)"
  by auto

lemma INT_extend_simps:
  "\<And>A B C. (\<Inter>x\<in>C. A x) \<inter> B = (if C={} then B else (\<Inter>x\<in>C. A x \<inter> B))"
  "\<And>A B C. A \<inter> (\<Inter>x\<in>C. B x) = (if C={} then A else (\<Inter>x\<in>C. A \<inter> B x))"
  "\<And>A B C. (\<Inter>x\<in>C. A x) - B = (if C={} then UNIV - B else (\<Inter>x\<in>C. A x - B))"
  "\<And>A B C. A - (\<Union>x\<in>C. B x) = (if C={} then A else (\<Inter>x\<in>C. A - B x))"
  "\<And>a B C. insert a (\<Inter>x\<in>C. B x) = (\<Inter>x\<in>C. insert a (B x))"
  "\<And>A B C. ((\<Inter>x\<in>C. A x) \<union> B) = (\<Inter>x\<in>C. A x \<union> B)"
  "\<And>A B C. A \<union> (\<Inter>x\<in>C. B x) = (\<Inter>x\<in>C. A \<union> B x)"
  "\<And>A B. (\<Inter>y\<in>A. \<Inter>x\<in>y. B x) = (\<Inter>x\<in>\<Union>A. B x)"
  "\<And>A B C. (\<Inter>x\<in>A. \<Inter>z\<in>B x. C z) = (\<Inter>z\<in>(\<Union>(B ` A)). C z)"
  "\<And>A B f. (\<Inter>a\<in>A. B (f a)) = (\<Inter>x\<in>f`A. B x)"
  by auto

text \<open>Finally\<close>

lemmas mem_simps =
  insert_iff empty_iff Un_iff Int_iff Compl_iff Diff_iff
  mem_Collect_eq UN_iff Union_iff INT_iff Inter_iff
  \<comment> \<open>Each of these has ALREADY been added \<open>[simp]\<close> above.\<close>

end