(* Title: HOL/Nonstandard_Analysis/HLim.thy
Author: Jacques D. Fleuriot, University of Cambridge
Author: Lawrence C Paulson
*)
section \<open>Limits and Continuity (Nonstandard)\<close>
theory HLim
imports Star
abbrevs "--->" = "\<midarrow>\<rightarrow>\<^sub>N\<^sub>S"
begin
text \<open>Nonstandard Definitions.\<close>
definition NSLIM :: "('a::real_normed_vector \<Rightarrow> 'b::real_normed_vector) \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> bool"
(\<open>(\<open>notation=\<open>mixfix NSLIM\<close>\<close>(_)/ \<midarrow>(_)/\<rightarrow>\<^sub>N\<^sub>S (_))\<close> [60, 0, 60] 60)
where "f \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S L \<longleftrightarrow> (\<forall>x. x \<noteq> star_of a \<and> x \<approx> star_of a \<longrightarrow> ( *f* f) x \<approx> star_of L)"
definition isNSCont :: "('a::real_normed_vector \<Rightarrow> 'b::real_normed_vector) \<Rightarrow> 'a \<Rightarrow> bool"
where \<comment> \<open>NS definition dispenses with limit notions\<close>
"isNSCont f a \<longleftrightarrow> (\<forall>y. y \<approx> star_of a \<longrightarrow> ( *f* f) y \<approx> star_of (f a))"
definition isNSUCont :: "('a::real_normed_vector \<Rightarrow> 'b::real_normed_vector) \<Rightarrow> bool"
where "isNSUCont f \<longleftrightarrow> (\<forall>x y. x \<approx> y \<longrightarrow> ( *f* f) x \<approx> ( *f* f) y)"
subsection \<open>Limits of Functions\<close>
lemma NSLIM_I: "(\<And>x. x \<noteq> star_of a \<Longrightarrow> x \<approx> star_of a \<Longrightarrow> starfun f x \<approx> star_of L) \<Longrightarrow> f \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S L"
by (simp add: NSLIM_def)
lemma NSLIM_D: "f \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S L \<Longrightarrow> x \<noteq> star_of a \<Longrightarrow> x \<approx> star_of a \<Longrightarrow> starfun f x \<approx> star_of L"
by (simp add: NSLIM_def)
text \<open>Proving properties of limits using nonstandard definition.
The properties hold for standard limits as well!\<close>
lemma NSLIM_mult: "f \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S l \<Longrightarrow> g \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S m \<Longrightarrow> (\<lambda>x. f x * g x) \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S (l * m)"
for l m :: "'a::real_normed_algebra"
by (auto simp add: NSLIM_def intro!: approx_mult_HFinite)
lemma starfun_scaleR [simp]: "starfun (\<lambda>x. f x *\<^sub>R g x) = (\<lambda>x. scaleHR (starfun f x) (starfun g x))"
by transfer (rule refl)
lemma NSLIM_scaleR: "f \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S l \<Longrightarrow> g \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S m \<Longrightarrow> (\<lambda>x. f x *\<^sub>R g x) \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S (l *\<^sub>R m)"
by (auto simp add: NSLIM_def intro!: approx_scaleR_HFinite)
lemma NSLIM_add: "f \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S l \<Longrightarrow> g \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S m \<Longrightarrow> (\<lambda>x. f x + g x) \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S (l + m)"
by (auto simp add: NSLIM_def intro!: approx_add)
lemma NSLIM_const [simp]: "(\<lambda>x. k) \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S k"
by (simp add: NSLIM_def)
lemma NSLIM_minus: "f \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S L \<Longrightarrow> (\<lambda>x. - f x) \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S -L"
by (simp add: NSLIM_def)
lemma NSLIM_diff: "f \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S l \<Longrightarrow> g \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S m \<Longrightarrow> (\<lambda>x. f x - g x) \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S (l - m)"
by (simp only: NSLIM_add NSLIM_minus diff_conv_add_uminus)
lemma NSLIM_add_minus: "f \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S l \<Longrightarrow> g \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S m \<Longrightarrow> (\<lambda>x. f x + - g x) \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S (l + -m)"
by (simp only: NSLIM_add NSLIM_minus)
lemma NSLIM_inverse: "f \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S L \<Longrightarrow> L \<noteq> 0 \<Longrightarrow> (\<lambda>x. inverse (f x)) \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S (inverse L)"
for L :: "'a::real_normed_div_algebra"
unfolding NSLIM_def by (metis (no_types) star_of_approx_inverse star_of_simps(6) starfun_inverse)
lemma NSLIM_zero:
assumes f: "f \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S l"
shows "(\<lambda>x. f(x) - l) \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S 0"
proof -
have "(\<lambda>x. f x - l) \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S l - l"
by (rule NSLIM_diff [OF f NSLIM_const])
then show ?thesis by simp
qed
lemma NSLIM_zero_cancel:
assumes "(\<lambda>x. f x - l) \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S 0"
shows "f \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S l"
proof -
have "(\<lambda>x. f x - l + l) \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S 0 + l"
by (fast intro: assms NSLIM_const NSLIM_add)
then show ?thesis
by simp
qed
lemma NSLIM_const_eq:
fixes a :: "'a::real_normed_algebra_1"
assumes "(\<lambda>x. k) \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S l"
shows "k = l"
proof -
have "\<not> (\<lambda>x. k) \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S l" if "k \<noteq> l"
proof -
have "star_of a + of_hypreal \<epsilon> \<approx> star_of a"
by (simp add: approx_def)
then show ?thesis
using epsilon_not_zero that by (force simp add: NSLIM_def)
qed
with assms show ?thesis by metis
qed
lemma NSLIM_unique: "f \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S l \<Longrightarrow> f \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S M \<Longrightarrow> l = M"
for a :: "'a::real_normed_algebra_1"
by (drule (1) NSLIM_diff) (auto dest!: NSLIM_const_eq)
lemma NSLIM_mult_zero: "f \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S 0 \<Longrightarrow> g \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S 0 \<Longrightarrow> (\<lambda>x. f x * g x) \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S 0"
for f g :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_algebra"
by (drule NSLIM_mult) auto
lemma NSLIM_self: "(\<lambda>x. x) \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S a"
by (simp add: NSLIM_def)
subsubsection \<open>Equivalence of \<^term>\<open>filterlim\<close> and \<^term>\<open>NSLIM\<close>\<close>
lemma LIM_NSLIM:
assumes f: "f \<midarrow>a\<rightarrow> L"
shows "f \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S L"
proof (rule NSLIM_I)
fix x
assume neq: "x \<noteq> star_of a"
assume approx: "x \<approx> star_of a"
have "starfun f x - star_of L \<in> Infinitesimal"
proof (rule InfinitesimalI2)
fix r :: real
assume r: "0 < r"
from LIM_D [OF f r] obtain s
where s: "0 < s" and less_r: "\<And>x. x \<noteq> a \<Longrightarrow> norm (x - a) < s \<Longrightarrow> norm (f x - L) < r"
by fast
from less_r have less_r':
"\<And>x. x \<noteq> star_of a \<Longrightarrow> hnorm (x - star_of a) < star_of s \<Longrightarrow>
hnorm (starfun f x - star_of L) < star_of r"
by transfer
from approx have "x - star_of a \<in> Infinitesimal"
by (simp only: approx_def)
then have "hnorm (x - star_of a) < star_of s"
using s by (rule InfinitesimalD2)
with neq show "hnorm (starfun f x - star_of L) < star_of r"
by (rule less_r')
qed
then show "starfun f x \<approx> star_of L"
by (unfold approx_def)
qed
lemma NSLIM_LIM:
assumes f: "f \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S L"
shows "f \<midarrow>a\<rightarrow> L"
proof (rule LIM_I)
fix r :: real
assume r: "0 < r"
have "\<exists>s>0. \<forall>x. x \<noteq> star_of a \<and> hnorm (x - star_of a) < s \<longrightarrow>
hnorm (starfun f x - star_of L) < star_of r"
proof (rule exI, safe)
show "0 < \<epsilon>"
by (rule epsilon_gt_zero)
next
fix x
assume neq: "x \<noteq> star_of a"
assume "hnorm (x - star_of a) < \<epsilon>"
with Infinitesimal_epsilon have "x - star_of a \<in> Infinitesimal"
by (rule hnorm_less_Infinitesimal)
then have "x \<approx> star_of a"
by (unfold approx_def)
with f neq have "starfun f x \<approx> star_of L"
by (rule NSLIM_D)
then have "starfun f x - star_of L \<in> Infinitesimal"
by (unfold approx_def)
then show "hnorm (starfun f x - star_of L) < star_of r"
using r by (rule InfinitesimalD2)
qed
then show "\<exists>s>0. \<forall>x. x \<noteq> a \<and> norm (x - a) < s \<longrightarrow> norm (f x - L) < r"
by transfer
qed
theorem LIM_NSLIM_iff: "f \<midarrow>x\<rightarrow> L \<longleftrightarrow> f \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S L"
by (blast intro: LIM_NSLIM NSLIM_LIM)
subsection \<open>Continuity\<close>
lemma isNSContD: "isNSCont f a \<Longrightarrow> y \<approx> star_of a \<Longrightarrow> ( *f* f) y \<approx> star_of (f a)"
by (simp add: isNSCont_def)
lemma isNSCont_NSLIM: "isNSCont f a \<Longrightarrow> f \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S (f a)"
by (simp add: isNSCont_def NSLIM_def)
lemma NSLIM_isNSCont: "f \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S (f a) \<Longrightarrow> isNSCont f a"
by (force simp add: isNSCont_def NSLIM_def)
text \<open>NS continuity can be defined using NS Limit in
similar fashion to standard definition of continuity.\<close>
lemma isNSCont_NSLIM_iff: "isNSCont f a \<longleftrightarrow> f \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S (f a)"
by (blast intro: isNSCont_NSLIM NSLIM_isNSCont)
text \<open>Hence, NS continuity can be given in terms of standard limit.\<close>
lemma isNSCont_LIM_iff: "(isNSCont f a) = (f \<midarrow>a\<rightarrow> (f a))"
by (simp add: LIM_NSLIM_iff isNSCont_NSLIM_iff)
text \<open>Moreover, it's trivial now that NS continuity
is equivalent to standard continuity.\<close>
lemma isNSCont_isCont_iff: "isNSCont f a \<longleftrightarrow> isCont f a"
by (simp add: isCont_def) (rule isNSCont_LIM_iff)
text \<open>Standard continuity \<open>\<Longrightarrow>\<close> NS continuity.\<close>
lemma isCont_isNSCont: "isCont f a \<Longrightarrow> isNSCont f a"
by (erule isNSCont_isCont_iff [THEN iffD2])
text \<open>NS continuity \<open>\<Longrightarrow>\<close> Standard continuity.\<close>
lemma isNSCont_isCont: "isNSCont f a \<Longrightarrow> isCont f a"
by (erule isNSCont_isCont_iff [THEN iffD1])
text \<open>Alternative definition of continuity.\<close>
text \<open>Prove equivalence between NS limits --
seems easier than using standard definition.\<close>
lemma NSLIM_at0_iff: "f \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S L \<longleftrightarrow> (\<lambda>h. f (a + h)) \<midarrow>0\<rightarrow>\<^sub>N\<^sub>S L"
proof
assume "f \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S L"
then show "(\<lambda>h. f (a + h)) \<midarrow>0\<rightarrow>\<^sub>N\<^sub>S L"
by (simp add: NSLIM_def) (metis (no_types) add_cancel_left_right approx_add_left_iff starfun_lambda_cancel)
next
assume *: "(\<lambda>h. f (a + h)) \<midarrow>0\<rightarrow>\<^sub>N\<^sub>S L"
show "f \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S L"
proof (clarsimp simp: NSLIM_def)
fix x
assume "x \<noteq> star_of a" "x \<approx> star_of a"
then have "(*f* (\<lambda>h. f (a + h))) (- star_of a + x) \<approx> star_of L"
by (metis (no_types, lifting) "*" NSLIM_D add.right_neutral add_minus_cancel approx_minus_iff2 star_zero_def)
then show "(*f* f) x \<approx> star_of L"
by (simp add: starfun_lambda_cancel)
qed
qed
lemma isNSCont_minus: "isNSCont f a \<Longrightarrow> isNSCont (\<lambda>x. - f x) a"
by (simp add: isNSCont_def)
lemma isNSCont_inverse: "isNSCont f x \<Longrightarrow> f x \<noteq> 0 \<Longrightarrow> isNSCont (\<lambda>x. inverse (f x)) x"
for f :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_div_algebra"
using NSLIM_inverse NSLIM_isNSCont isNSCont_NSLIM by blast
lemma isNSCont_const [simp]: "isNSCont (\<lambda>x. k) a"
by (simp add: isNSCont_def)
lemma isNSCont_abs [simp]: "isNSCont abs a"
for a :: real
by (auto simp: isNSCont_def intro: approx_hrabs simp: starfun_rabs_hrabs)
subsection \<open>Uniform Continuity\<close>
lemma isNSUContD: "isNSUCont f \<Longrightarrow> x \<approx> y \<Longrightarrow> ( *f* f) x \<approx> ( *f* f) y"
by (simp add: isNSUCont_def)
lemma isUCont_isNSUCont:
fixes f :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_vector"
assumes f: "isUCont f"
shows "isNSUCont f"
unfolding isNSUCont_def
proof safe
fix x y :: "'a star"
assume approx: "x \<approx> y"
have "starfun f x - starfun f y \<in> Infinitesimal"
proof (rule InfinitesimalI2)
fix r :: real
assume r: "0 < r"
with f obtain s where s: "0 < s"
and less_r: "\<And>x y. norm (x - y) < s \<Longrightarrow> norm (f x - f y) < r"
by (auto simp add: isUCont_def dist_norm)
from less_r have less_r':
"\<And>x y. hnorm (x - y) < star_of s \<Longrightarrow> hnorm (starfun f x - starfun f y) < star_of r"
by transfer
from approx have "x - y \<in> Infinitesimal"
by (unfold approx_def)
then have "hnorm (x - y) < star_of s"
using s by (rule InfinitesimalD2)
then show "hnorm (starfun f x - starfun f y) < star_of r"
by (rule less_r')
qed
then show "starfun f x \<approx> starfun f y"
by (unfold approx_def)
qed
lemma isNSUCont_isUCont:
fixes f :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_vector"
assumes f: "isNSUCont f"
shows "isUCont f"
unfolding isUCont_def dist_norm
proof safe
fix r :: real
assume r: "0 < r"
have "\<exists>s>0. \<forall>x y. hnorm (x - y) < s \<longrightarrow> hnorm (starfun f x - starfun f y) < star_of r"
proof (rule exI, safe)
show "0 < \<epsilon>"
by (rule epsilon_gt_zero)
next
fix x y :: "'a star"
assume "hnorm (x - y) < \<epsilon>"
with Infinitesimal_epsilon have "x - y \<in> Infinitesimal"
by (rule hnorm_less_Infinitesimal)
then have "x \<approx> y"
by (unfold approx_def)
with f have "starfun f x \<approx> starfun f y"
by (simp add: isNSUCont_def)
then have "starfun f x - starfun f y \<in> Infinitesimal"
by (unfold approx_def)
then show "hnorm (starfun f x - starfun f y) < star_of r"
using r by (rule InfinitesimalD2)
qed
then show "\<exists>s>0. \<forall>x y. norm (x - y) < s \<longrightarrow> norm (f x - f y) < r"
by transfer
qed
end