(* Title: HOL/Quickcheck_Exhaustive.thy
Author: Lukas Bulwahn, TU Muenchen
*)
section \<open>A simple counterexample generator performing exhaustive testing\<close>
theory Quickcheck_Exhaustive
imports Quickcheck_Random
keywords "quickcheck_generator" :: thy_decl
begin
subsection \<open>Basic operations for exhaustive generators\<close>
definition orelse :: "'a option \<Rightarrow> 'a option \<Rightarrow> 'a option" (infixr \<open>orelse\<close> 55)
where [code_unfold]: "x orelse y = (case x of Some x' \<Rightarrow> Some x' | None \<Rightarrow> y)"
subsection \<open>Exhaustive generator type classes\<close>
class exhaustive = term_of +
fixes exhaustive :: "('a \<Rightarrow> (bool \<times> term list) option) \<Rightarrow> natural \<Rightarrow> (bool \<times> term list) option"
class full_exhaustive = term_of +
fixes full_exhaustive ::
"('a \<times> (unit \<Rightarrow> term) \<Rightarrow> (bool \<times> term list) option) \<Rightarrow> natural \<Rightarrow> (bool \<times> term list) option"
instantiation natural :: full_exhaustive
begin
function full_exhaustive_natural' ::
"(natural \<times> (unit \<Rightarrow> term) \<Rightarrow> (bool \<times> term list) option) \<Rightarrow>
natural \<Rightarrow> natural \<Rightarrow> (bool \<times> term list) option"
where "full_exhaustive_natural' f d i =
(if d < i then None
else (f (i, \<lambda>_. Code_Evaluation.term_of i)) orelse (full_exhaustive_natural' f d (i + 1)))"
by pat_completeness auto
termination
by (relation "measure (\<lambda>(_, d, i). nat_of_natural (d + 1 - i))") (auto simp add: less_natural_def)
definition "full_exhaustive f d = full_exhaustive_natural' f d 0"
instance ..
end
instantiation natural :: exhaustive
begin
function exhaustive_natural' ::
"(natural \<Rightarrow> (bool \<times> term list) option) \<Rightarrow> natural \<Rightarrow> natural \<Rightarrow> (bool \<times> term list) option"
where "exhaustive_natural' f d i =
(if d < i then None
else (f i orelse exhaustive_natural' f d (i + 1)))"
by pat_completeness auto
termination
by (relation "measure (\<lambda>(_, d, i). nat_of_natural (d + 1 - i))") (auto simp add: less_natural_def)
definition "exhaustive f d = exhaustive_natural' f d 0"
instance ..
end
instantiation integer :: exhaustive
begin
function exhaustive_integer' ::
"(integer \<Rightarrow> (bool \<times> term list) option) \<Rightarrow> integer \<Rightarrow> integer \<Rightarrow> (bool \<times> term list) option"
where "exhaustive_integer' f d i =
(if d < i then None else (f i orelse exhaustive_integer' f d (i + 1)))"
by pat_completeness auto
termination
by (relation "measure (\<lambda>(_, d, i). nat_of_integer (d + 1 - i))")
(auto simp add: less_integer_def nat_of_integer_def)
definition "exhaustive f d = exhaustive_integer' f (integer_of_natural d) (- (integer_of_natural d))"
instance ..
end
instantiation integer :: full_exhaustive
begin
function full_exhaustive_integer' ::
"(integer \<times> (unit \<Rightarrow> term) \<Rightarrow> (bool \<times> term list) option) \<Rightarrow>
integer \<Rightarrow> integer \<Rightarrow> (bool \<times> term list) option"
where "full_exhaustive_integer' f d i =
(if d < i then None
else
(case f (i, \<lambda>_. Code_Evaluation.term_of i) of
Some t \<Rightarrow> Some t
| None \<Rightarrow> full_exhaustive_integer' f d (i + 1)))"
by pat_completeness auto
termination
by (relation "measure (\<lambda>(_, d, i). nat_of_integer (d + 1 - i))")
(auto simp add: less_integer_def nat_of_integer_def)
definition "full_exhaustive f d =
full_exhaustive_integer' f (integer_of_natural d) (- (integer_of_natural d))"
instance ..
end
instantiation nat :: exhaustive
begin
definition "exhaustive f d = exhaustive (\<lambda>x. f (nat_of_natural x)) d"
instance ..
end
instantiation nat :: full_exhaustive
begin
definition "full_exhaustive f d =
full_exhaustive (\<lambda>(x, xt). f (nat_of_natural x, \<lambda>_. Code_Evaluation.term_of (nat_of_natural x))) d"
instance ..
end
instantiation int :: exhaustive
begin
function exhaustive_int' ::
"(int \<Rightarrow> (bool \<times> term list) option) \<Rightarrow> int \<Rightarrow> int \<Rightarrow> (bool \<times> term list) option"
where "exhaustive_int' f d i =
(if d < i then None else (f i orelse exhaustive_int' f d (i + 1)))"
by pat_completeness auto
termination
by (relation "measure (\<lambda>(_, d, i). nat (d + 1 - i))") auto
definition "exhaustive f d =
exhaustive_int' f (int_of_integer (integer_of_natural d))
(- (int_of_integer (integer_of_natural d)))"
instance ..
end
instantiation int :: full_exhaustive
begin
function full_exhaustive_int' ::
"(int \<times> (unit \<Rightarrow> term) \<Rightarrow> (bool \<times> term list) option) \<Rightarrow>
int \<Rightarrow> int \<Rightarrow> (bool \<times> term list) option"
where "full_exhaustive_int' f d i =
(if d < i then None
else
(case f (i, \<lambda>_. Code_Evaluation.term_of i) of
Some t \<Rightarrow> Some t
| None \<Rightarrow> full_exhaustive_int' f d (i + 1)))"
by pat_completeness auto
termination
by (relation "measure (\<lambda>(_, d, i). nat (d + 1 - i))") auto
definition "full_exhaustive f d =
full_exhaustive_int' f (int_of_integer (integer_of_natural d))
(- (int_of_integer (integer_of_natural d)))"
instance ..
end
instantiation prod :: (exhaustive, exhaustive) exhaustive
begin
definition "exhaustive f d = exhaustive (\<lambda>x. exhaustive (\<lambda>y. f ((x, y))) d) d"
instance ..
end
context
includes term_syntax
begin
definition
[code_unfold]: "valtermify_pair x y =
Code_Evaluation.valtermify (Pair :: 'a::typerep \<Rightarrow> 'b::typerep \<Rightarrow> 'a \<times> 'b) {\<cdot>} x {\<cdot>} y"
end
instantiation prod :: (full_exhaustive, full_exhaustive) full_exhaustive
begin
definition "full_exhaustive f d =
full_exhaustive (\<lambda>x. full_exhaustive (\<lambda>y. f (valtermify_pair x y)) d) d"
instance ..
end
instantiation set :: (exhaustive) exhaustive
begin
fun exhaustive_set
where
"exhaustive_set f i =
(if i = 0 then None
else
f {} orelse
exhaustive_set
(\<lambda>A. f A orelse exhaustive (\<lambda>x. if x \<in> A then None else f (insert x A)) (i - 1)) (i - 1))"
instance ..
end
instantiation set :: (full_exhaustive) full_exhaustive
begin
fun full_exhaustive_set
where
"full_exhaustive_set f i =
(if i = 0 then None
else
f valterm_emptyset orelse
full_exhaustive_set
(\<lambda>A. f A orelse Quickcheck_Exhaustive.full_exhaustive
(\<lambda>x. if fst x \<in> fst A then None else f (valtermify_insert x A)) (i - 1)) (i - 1))"
instance ..
end
instantiation "fun" :: ("{equal,exhaustive}", exhaustive) exhaustive
begin
fun exhaustive_fun' ::
"(('a \<Rightarrow> 'b) \<Rightarrow> (bool \<times> term list) option) \<Rightarrow> natural \<Rightarrow> natural \<Rightarrow> (bool \<times> term list) option"
where
"exhaustive_fun' f i d =
(exhaustive (\<lambda>b. f (\<lambda>_. b)) d) orelse
(if i > 1 then
exhaustive_fun'
(\<lambda>g. exhaustive (\<lambda>a. exhaustive (\<lambda>b. f (g(a := b))) d) d) (i - 1) d else None)"
definition exhaustive_fun ::
"(('a \<Rightarrow> 'b) \<Rightarrow> (bool \<times> term list) option) \<Rightarrow> natural \<Rightarrow> (bool \<times> term list) option"
where "exhaustive_fun f d = exhaustive_fun' f d d"
instance ..
end
definition [code_unfold]:
"valtermify_absdummy =
(\<lambda>(v, t).
(\<lambda>_::'a. v,
\<lambda>u::unit. Code_Evaluation.Abs (STR ''x'') (Typerep.typerep TYPE('a::typerep)) (t ())))"
context
includes term_syntax
begin
definition
[code_unfold]: "valtermify_fun_upd g a b =
Code_Evaluation.valtermify
(fun_upd :: ('a::typerep \<Rightarrow> 'b::typerep) \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'a \<Rightarrow> 'b) {\<cdot>} g {\<cdot>} a {\<cdot>} b"
end
instantiation "fun" :: ("{equal,full_exhaustive}", full_exhaustive) full_exhaustive
begin
fun full_exhaustive_fun' ::
"(('a \<Rightarrow> 'b) \<times> (unit \<Rightarrow> term) \<Rightarrow> (bool \<times> term list) option) \<Rightarrow>
natural \<Rightarrow> natural \<Rightarrow> (bool \<times> term list) option"
where
"full_exhaustive_fun' f i d =
full_exhaustive (\<lambda>v. f (valtermify_absdummy v)) d orelse
(if i > 1 then
full_exhaustive_fun'
(\<lambda>g. full_exhaustive
(\<lambda>a. full_exhaustive (\<lambda>b. f (valtermify_fun_upd g a b)) d) d) (i - 1) d
else None)"
definition full_exhaustive_fun ::
"(('a \<Rightarrow> 'b) \<times> (unit \<Rightarrow> term) \<Rightarrow> (bool \<times> term list) option) \<Rightarrow>
natural \<Rightarrow> (bool \<times> term list) option"
where "full_exhaustive_fun f d = full_exhaustive_fun' f d d"
instance ..
end
subsubsection \<open>A smarter enumeration scheme for functions over finite datatypes\<close>
class check_all = enum + term_of +
fixes check_all :: "('a \<times> (unit \<Rightarrow> term) \<Rightarrow> (bool \<times> term list) option) \<Rightarrow> (bool * term list) option"
fixes enum_term_of :: "'a itself \<Rightarrow> unit \<Rightarrow> term list"
fun check_all_n_lists :: "('a::check_all list \<times> (unit \<Rightarrow> term list) \<Rightarrow>
(bool \<times> term list) option) \<Rightarrow> natural \<Rightarrow> (bool * term list) option"
where
"check_all_n_lists f n =
(if n = 0 then f ([], (\<lambda>_. []))
else check_all (\<lambda>(x, xt).
check_all_n_lists (\<lambda>(xs, xst). f ((x # xs), (\<lambda>_. (xt () # xst ())))) (n - 1)))"
context
includes term_syntax
begin
definition
[code_unfold]: "termify_fun_upd g a b =
(Code_Evaluation.termify
(fun_upd :: ('a::typerep \<Rightarrow> 'b::typerep) \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'a \<Rightarrow> 'b) <\<cdot>> g <\<cdot>> a <\<cdot>> b)"
end
definition mk_map_term ::
"(unit \<Rightarrow> typerep) \<Rightarrow> (unit \<Rightarrow> typerep) \<Rightarrow>
(unit \<Rightarrow> term list) \<Rightarrow> (unit \<Rightarrow> term list) \<Rightarrow> unit \<Rightarrow> term"
where "mk_map_term T1 T2 domm rng =
(\<lambda>_.
let
T1 = T1 ();
T2 = T2 ();
update_term =
(\<lambda>g (a, b).
Code_Evaluation.App (Code_Evaluation.App (Code_Evaluation.App
(Code_Evaluation.Const (STR ''Fun.fun_upd'')
(Typerep.Typerep (STR ''fun'') [Typerep.Typerep (STR ''fun'') [T1, T2],
Typerep.Typerep (STR ''fun'') [T1,
Typerep.Typerep (STR ''fun'') [T2, Typerep.Typerep (STR ''fun'') [T1, T2]]]]))
g) a) b)
in
List.foldl update_term
(Code_Evaluation.Abs (STR ''x'') T1
(Code_Evaluation.Const (STR ''HOL.undefined'') T2)) (zip (domm ()) (rng ())))"
instantiation "fun" :: ("{equal,check_all}", check_all) check_all
begin
definition
"check_all f =
(let
mk_term =
mk_map_term
(\<lambda>_. Typerep.typerep (TYPE('a)))
(\<lambda>_. Typerep.typerep (TYPE('b)))
(enum_term_of (TYPE('a)));
enum = (Enum.enum :: 'a list)
in
check_all_n_lists
(\<lambda>(ys, yst). f (the \<circ> map_of (zip enum ys), mk_term yst))
(natural_of_nat (length enum)))"
definition enum_term_of_fun :: "('a \<Rightarrow> 'b) itself \<Rightarrow> unit \<Rightarrow> term list"
where "enum_term_of_fun =
(\<lambda>_ _.
let
enum_term_of_a = enum_term_of (TYPE('a));
mk_term =
mk_map_term
(\<lambda>_. Typerep.typerep (TYPE('a)))
(\<lambda>_. Typerep.typerep (TYPE('b)))
enum_term_of_a
in
map (\<lambda>ys. mk_term (\<lambda>_. ys) ())
(List.n_lists (length (enum_term_of_a ())) (enum_term_of (TYPE('b)) ())))"
instance ..
end
context
includes term_syntax
begin
fun check_all_subsets ::
"(('a::typerep) set \<times> (unit \<Rightarrow> term) \<Rightarrow> (bool \<times> term list) option) \<Rightarrow>
('a \<times> (unit \<Rightarrow> term)) list \<Rightarrow> (bool \<times> term list) option"
where
"check_all_subsets f [] = f valterm_emptyset"
| "check_all_subsets f (x # xs) =
check_all_subsets (\<lambda>s. case f s of Some ts \<Rightarrow> Some ts | None \<Rightarrow> f (valtermify_insert x s)) xs"
definition
[code_unfold]: "term_emptyset = Code_Evaluation.termify ({} :: ('a::typerep) set)"
definition
[code_unfold]: "termify_insert x s =
Code_Evaluation.termify (insert :: ('a::typerep) \<Rightarrow> 'a set \<Rightarrow> 'a set) <\<cdot>> x <\<cdot>> s"
definition setify :: "('a::typerep) itself \<Rightarrow> term list \<Rightarrow> term"
where
"setify T ts = foldr (termify_insert T) ts (term_emptyset T)"
end
instantiation set :: (check_all) check_all
begin
definition
"check_all_set f =
check_all_subsets f
(zip (Enum.enum :: 'a list)
(map (\<lambda>a. \<lambda>u :: unit. a) (Quickcheck_Exhaustive.enum_term_of (TYPE ('a)) ())))"
definition enum_term_of_set :: "'a set itself \<Rightarrow> unit \<Rightarrow> term list"
where "enum_term_of_set _ _ =
map (setify (TYPE('a))) (subseqs (Quickcheck_Exhaustive.enum_term_of (TYPE('a)) ()))"
instance ..
end
instantiation unit :: check_all
begin
definition "check_all f = f (Code_Evaluation.valtermify ())"
definition enum_term_of_unit :: "unit itself \<Rightarrow> unit \<Rightarrow> term list"
where "enum_term_of_unit = (\<lambda>_ _. [Code_Evaluation.term_of ()])"
instance ..
end
instantiation bool :: check_all
begin
definition
"check_all f =
(case f (Code_Evaluation.valtermify False) of
Some x' \<Rightarrow> Some x'
| None \<Rightarrow> f (Code_Evaluation.valtermify True))"
definition enum_term_of_bool :: "bool itself \<Rightarrow> unit \<Rightarrow> term list"
where "enum_term_of_bool = (\<lambda>_ _. map Code_Evaluation.term_of (Enum.enum :: bool list))"
instance ..
end
context
includes term_syntax
begin
definition [code_unfold]:
"termify_pair x y =
Code_Evaluation.termify (Pair :: 'a::typerep \<Rightarrow> 'b :: typerep \<Rightarrow> 'a * 'b) <\<cdot>> x <\<cdot>> y"
end
instantiation prod :: (check_all, check_all) check_all
begin
definition "check_all f = check_all (\<lambda>x. check_all (\<lambda>y. f (valtermify_pair x y)))"
definition enum_term_of_prod :: "('a * 'b) itself \<Rightarrow> unit \<Rightarrow> term list"
where "enum_term_of_prod =
(\<lambda>_ _.
map (\<lambda>(x, y). termify_pair TYPE('a) TYPE('b) x y)
(List.product (enum_term_of (TYPE('a)) ()) (enum_term_of (TYPE('b)) ())))"
instance ..
end
context
includes term_syntax
begin
definition
[code_unfold]: "valtermify_Inl x =
Code_Evaluation.valtermify (Inl :: 'a::typerep \<Rightarrow> 'a + 'b :: typerep) {\<cdot>} x"
definition
[code_unfold]: "valtermify_Inr x =
Code_Evaluation.valtermify (Inr :: 'b::typerep \<Rightarrow> 'a::typerep + 'b) {\<cdot>} x"
end
instantiation sum :: (check_all, check_all) check_all
begin
definition
"check_all f = check_all (\<lambda>a. f (valtermify_Inl a)) orelse check_all (\<lambda>b. f (valtermify_Inr b))"
definition enum_term_of_sum :: "('a + 'b) itself \<Rightarrow> unit \<Rightarrow> term list"
where "enum_term_of_sum =
(\<lambda>_ _.
let
T1 = Typerep.typerep (TYPE('a));
T2 = Typerep.typerep (TYPE('b))
in
map
(Code_Evaluation.App (Code_Evaluation.Const (STR ''Sum_Type.Inl'')
(Typerep.Typerep (STR ''fun'') [T1, Typerep.Typerep (STR ''Sum_Type.sum'') [T1, T2]])))
(enum_term_of (TYPE('a)) ()) @
map
(Code_Evaluation.App (Code_Evaluation.Const (STR ''Sum_Type.Inr'')
(Typerep.Typerep (STR ''fun'') [T2, Typerep.Typerep (STR ''Sum_Type.sum'') [T1, T2]])))
(enum_term_of (TYPE('b)) ()))"
instance ..
end
instantiation char :: check_all
begin
primrec check_all_char' ::
"(char \<times> (unit \<Rightarrow> term) \<Rightarrow> (bool \<times> term list) option) \<Rightarrow> char list \<Rightarrow> (bool \<times> term list) option"
where "check_all_char' f [] = None"
| "check_all_char' f (c # cs) = f (c, \<lambda>_. Code_Evaluation.term_of c)
orelse check_all_char' f cs"
definition check_all_char ::
"(char \<times> (unit \<Rightarrow> term) \<Rightarrow> (bool \<times> term list) option) \<Rightarrow> (bool \<times> term list) option"
where "check_all f = check_all_char' f Enum.enum"
definition enum_term_of_char :: "char itself \<Rightarrow> unit \<Rightarrow> term list"
where
"enum_term_of_char = (\<lambda>_ _. map Code_Evaluation.term_of (Enum.enum :: char list))"
instance ..
end
instantiation option :: (check_all) check_all
begin
definition
"check_all f =
f (Code_Evaluation.valtermify (None :: 'a option)) orelse
check_all
(\<lambda>(x, t).
f
(Some x,
\<lambda>_. Code_Evaluation.App
(Code_Evaluation.Const (STR ''Option.option.Some'')
(Typerep.Typerep (STR ''fun'')
[Typerep.typerep TYPE('a),
Typerep.Typerep (STR ''Option.option'') [Typerep.typerep TYPE('a)]])) (t ())))"
definition enum_term_of_option :: "'a option itself \<Rightarrow> unit \<Rightarrow> term list"
where "enum_term_of_option =
(\<lambda> _ _.
Code_Evaluation.term_of (None :: 'a option) #
(map
(Code_Evaluation.App
(Code_Evaluation.Const (STR ''Option.option.Some'')
(Typerep.Typerep (STR ''fun'')
[Typerep.typerep TYPE('a),
Typerep.Typerep (STR ''Option.option'') [Typerep.typerep TYPE('a)]])))
(enum_term_of (TYPE('a)) ())))"
instance ..
end
instantiation Enum.finite_1 :: check_all
begin
definition "check_all f = f (Code_Evaluation.valtermify Enum.finite_1.a\<^sub>1)"
definition enum_term_of_finite_1 :: "Enum.finite_1 itself \<Rightarrow> unit \<Rightarrow> term list"
where "enum_term_of_finite_1 = (\<lambda>_ _. [Code_Evaluation.term_of Enum.finite_1.a\<^sub>1])"
instance ..
end
instantiation Enum.finite_2 :: check_all
begin
definition
"check_all f =
(f (Code_Evaluation.valtermify Enum.finite_2.a\<^sub>1) orelse
f (Code_Evaluation.valtermify Enum.finite_2.a\<^sub>2))"
definition enum_term_of_finite_2 :: "Enum.finite_2 itself \<Rightarrow> unit \<Rightarrow> term list"
where "enum_term_of_finite_2 =
(\<lambda>_ _. map Code_Evaluation.term_of (Enum.enum :: Enum.finite_2 list))"
instance ..
end
instantiation Enum.finite_3 :: check_all
begin
definition
"check_all f =
(f (Code_Evaluation.valtermify Enum.finite_3.a\<^sub>1) orelse
f (Code_Evaluation.valtermify Enum.finite_3.a\<^sub>2) orelse
f (Code_Evaluation.valtermify Enum.finite_3.a\<^sub>3))"
definition enum_term_of_finite_3 :: "Enum.finite_3 itself \<Rightarrow> unit \<Rightarrow> term list"
where "enum_term_of_finite_3 =
(\<lambda>_ _. map Code_Evaluation.term_of (Enum.enum :: Enum.finite_3 list))"
instance ..
end
instantiation Enum.finite_4 :: check_all
begin
definition
"check_all f =
f (Code_Evaluation.valtermify Enum.finite_4.a\<^sub>1) orelse
f (Code_Evaluation.valtermify Enum.finite_4.a\<^sub>2) orelse
f (Code_Evaluation.valtermify Enum.finite_4.a\<^sub>3) orelse
f (Code_Evaluation.valtermify Enum.finite_4.a\<^sub>4)"
definition enum_term_of_finite_4 :: "Enum.finite_4 itself \<Rightarrow> unit \<Rightarrow> term list"
where "enum_term_of_finite_4 =
(\<lambda>_ _. map Code_Evaluation.term_of (Enum.enum :: Enum.finite_4 list))"
instance ..
end
subsection \<open>Bounded universal quantifiers\<close>
class bounded_forall =
fixes bounded_forall :: "('a \<Rightarrow> bool) \<Rightarrow> natural \<Rightarrow> bool"
subsection \<open>Fast exhaustive combinators\<close>
class fast_exhaustive = term_of +
fixes fast_exhaustive :: "('a \<Rightarrow> unit) \<Rightarrow> natural \<Rightarrow> unit"
axiomatization throw_Counterexample :: "term list \<Rightarrow> unit"
axiomatization catch_Counterexample :: "unit \<Rightarrow> term list option"
code_printing
constant throw_Counterexample \<rightharpoonup>
(Quickcheck) "raise (Exhaustive'_Generators.Counterexample _)"
| constant catch_Counterexample \<rightharpoonup>
(Quickcheck) "(((_); NONE) handle Exhaustive'_Generators.Counterexample ts \<Rightarrow> SOME ts)"
subsection \<open>Continuation passing style functions as plus monad\<close>
type_synonym 'a cps = "('a \<Rightarrow> term list option) \<Rightarrow> term list option"
definition cps_empty :: "'a cps"
where "cps_empty = (\<lambda>cont. None)"
definition cps_single :: "'a \<Rightarrow> 'a cps"
where "cps_single v = (\<lambda>cont. cont v)"
definition cps_bind :: "'a cps \<Rightarrow> ('a \<Rightarrow> 'b cps) \<Rightarrow> 'b cps"
where "cps_bind m f = (\<lambda>cont. m (\<lambda>a. (f a) cont))"
definition cps_plus :: "'a cps \<Rightarrow> 'a cps \<Rightarrow> 'a cps"
where "cps_plus a b = (\<lambda>c. case a c of None \<Rightarrow> b c | Some x \<Rightarrow> Some x)"
definition cps_if :: "bool \<Rightarrow> unit cps"
where "cps_if b = (if b then cps_single () else cps_empty)"
definition cps_not :: "unit cps \<Rightarrow> unit cps"
where "cps_not n = (\<lambda>c. case n (\<lambda>u. Some []) of None \<Rightarrow> c () | Some _ \<Rightarrow> None)"
type_synonym 'a pos_bound_cps =
"('a \<Rightarrow> (bool * term list) option) \<Rightarrow> natural \<Rightarrow> (bool * term list) option"
definition pos_bound_cps_empty :: "'a pos_bound_cps"
where "pos_bound_cps_empty = (\<lambda>cont i. None)"
definition pos_bound_cps_single :: "'a \<Rightarrow> 'a pos_bound_cps"
where "pos_bound_cps_single v = (\<lambda>cont i. cont v)"
definition pos_bound_cps_bind :: "'a pos_bound_cps \<Rightarrow> ('a \<Rightarrow> 'b pos_bound_cps) \<Rightarrow> 'b pos_bound_cps"
where "pos_bound_cps_bind m f = (\<lambda>cont i. if i = 0 then None else (m (\<lambda>a. (f a) cont i) (i - 1)))"
definition pos_bound_cps_plus :: "'a pos_bound_cps \<Rightarrow> 'a pos_bound_cps \<Rightarrow> 'a pos_bound_cps"
where "pos_bound_cps_plus a b = (\<lambda>c i. case a c i of None \<Rightarrow> b c i | Some x \<Rightarrow> Some x)"
definition pos_bound_cps_if :: "bool \<Rightarrow> unit pos_bound_cps"
where "pos_bound_cps_if b = (if b then pos_bound_cps_single () else pos_bound_cps_empty)"
datatype (plugins only: code extraction) (dead 'a) unknown =
Unknown | Known 'a
datatype (plugins only: code extraction) (dead 'a) three_valued =
Unknown_value | Value 'a | No_value
type_synonym 'a neg_bound_cps =
"('a unknown \<Rightarrow> term list three_valued) \<Rightarrow> natural \<Rightarrow> term list three_valued"
definition neg_bound_cps_empty :: "'a neg_bound_cps"
where "neg_bound_cps_empty = (\<lambda>cont i. No_value)"
definition neg_bound_cps_single :: "'a \<Rightarrow> 'a neg_bound_cps"
where "neg_bound_cps_single v = (\<lambda>cont i. cont (Known v))"
definition neg_bound_cps_bind :: "'a neg_bound_cps \<Rightarrow> ('a \<Rightarrow> 'b neg_bound_cps) \<Rightarrow> 'b neg_bound_cps"
where "neg_bound_cps_bind m f =
(\<lambda>cont i.
if i = 0 then cont Unknown
else m (\<lambda>a. case a of Unknown \<Rightarrow> cont Unknown | Known a' \<Rightarrow> f a' cont i) (i - 1))"
definition neg_bound_cps_plus :: "'a neg_bound_cps \<Rightarrow> 'a neg_bound_cps \<Rightarrow> 'a neg_bound_cps"
where "neg_bound_cps_plus a b =
(\<lambda>c i.
case a c i of
No_value \<Rightarrow> b c i
| Value x \<Rightarrow> Value x
| Unknown_value \<Rightarrow>
(case b c i of
No_value \<Rightarrow> Unknown_value
| Value x \<Rightarrow> Value x
| Unknown_value \<Rightarrow> Unknown_value))"
definition neg_bound_cps_if :: "bool \<Rightarrow> unit neg_bound_cps"
where "neg_bound_cps_if b = (if b then neg_bound_cps_single () else neg_bound_cps_empty)"
definition neg_bound_cps_not :: "unit pos_bound_cps \<Rightarrow> unit neg_bound_cps"
where "neg_bound_cps_not n =
(\<lambda>c i. case n (\<lambda>u. Some (True, [])) i of None \<Rightarrow> c (Known ()) | Some _ \<Rightarrow> No_value)"
definition pos_bound_cps_not :: "unit neg_bound_cps \<Rightarrow> unit pos_bound_cps"
where "pos_bound_cps_not n =
(\<lambda>c i. case n (\<lambda>u. Value []) i of No_value \<Rightarrow> c () | Value _ \<Rightarrow> None | Unknown_value \<Rightarrow> None)"
subsection \<open>Defining generators for any first-order data type\<close>
axiomatization unknown :: 'a
notation (output) unknown (\<open>?\<close>)
ML_file \<open>Tools/Quickcheck/exhaustive_generators.ML\<close>
declare [[quickcheck_batch_tester = exhaustive]]
subsection \<open>Defining generators for abstract types\<close>
ML_file \<open>Tools/Quickcheck/abstract_generators.ML\<close>
hide_fact (open) orelse_def
no_notation orelse (infixr \<open>orelse\<close> 55)
hide_const valtermify_absdummy valtermify_fun_upd
valterm_emptyset valtermify_insert
valtermify_pair valtermify_Inl valtermify_Inr
termify_fun_upd term_emptyset termify_insert termify_pair setify
hide_const (open)
exhaustive full_exhaustive
exhaustive_int' full_exhaustive_int'
exhaustive_integer' full_exhaustive_integer'
exhaustive_natural' full_exhaustive_natural'
throw_Counterexample catch_Counterexample
check_all enum_term_of
orelse unknown mk_map_term check_all_n_lists check_all_subsets
hide_type (open) cps pos_bound_cps neg_bound_cps unknown three_valued
hide_const (open) cps_empty cps_single cps_bind cps_plus cps_if cps_not
pos_bound_cps_empty pos_bound_cps_single pos_bound_cps_bind
pos_bound_cps_plus pos_bound_cps_if pos_bound_cps_not
neg_bound_cps_empty neg_bound_cps_single neg_bound_cps_bind
neg_bound_cps_plus neg_bound_cps_if neg_bound_cps_not
Unknown Known Unknown_value Value No_value
end