(* Title: Pure/Isar/code.ML
Author: Florian Haftmann, TU Muenchen
Abstract executable ingredients of theory. Management of data
dependent on executable ingredients as synchronized cache; purged
on any change of underlying executable ingredients.
*)
signature CODE =
sig
(*constants*)
val check_const: theory -> term -> string
val read_const: theory -> string -> string
val string_of_const: theory -> string -> string
val args_number: theory -> string -> int
(*constructor sets*)
val constrset_of_consts: theory -> (string * typ) list
-> string * ((string * sort) list * (string * ((string * sort) list * typ list)) list)
(*code equations and certificates*)
val assert_eqn: theory -> thm * bool -> thm * bool
val assert_abs_eqn: theory -> string option -> thm -> thm * (string * string)
type cert
val constrain_cert: theory -> sort list -> cert -> cert
val conclude_cert: cert -> cert
val typargs_deps_of_cert: theory -> cert -> (string * sort) list * (string * typ list) list
val equations_of_cert: theory -> cert -> ((string * sort) list * typ)
* (((string option * term) list * (string option * term)) * (thm option * bool)) list option
val pretty_cert: theory -> cert -> Pretty.T list
(*executable code*)
type constructors
type abs_type
val type_interpretation: (string -> theory -> theory) -> theory -> theory
val datatype_interpretation: (string * constructors -> theory -> theory) -> theory -> theory
val abstype_interpretation: (string * abs_type -> theory -> theory) -> theory -> theory
val declare_datatype_global: (string * typ) list -> theory -> theory
val declare_datatype_cmd: string list -> theory -> theory
val declare_abstype: thm -> local_theory -> local_theory
val declare_abstype_global: thm -> theory -> theory
val declare_default_eqns: (thm * bool) list -> local_theory -> local_theory
val declare_default_eqns_global: (thm * bool) list -> theory -> theory
val declare_eqns: (thm * bool) list -> local_theory -> local_theory
val declare_eqns_global: (thm * bool) list -> theory -> theory
val add_eqn_global: thm * bool -> theory -> theory
val del_eqn_global: thm -> theory -> theory
val declare_abstract_eqn: thm -> local_theory -> local_theory
val declare_abstract_eqn_global: thm -> theory -> theory
val declare_aborting_global: string -> theory -> theory
val declare_unimplemented_global: string -> theory -> theory
val declare_case_global: thm -> theory -> theory
val declare_undefined_global: string -> theory -> theory
val get_type: theory -> string -> constructors * bool
val get_type_of_constr_or_abstr: theory -> string -> (string * bool) option
val is_constr: theory -> string -> bool
val is_abstr: theory -> string -> bool
val get_cert: Proof.context -> ((thm * bool) list -> (thm * bool) list option) list
-> string -> cert
type case_schema
val get_case_schema: theory -> string -> case_schema option
val get_case_cong: theory -> string -> thm option
val is_undefined: theory -> string -> bool
val print_codesetup: theory -> unit
end;
signature CODE_DATA_ARGS =
sig
type T
val empty: T
end;
signature CODE_DATA =
sig
type T
val change: theory option -> (T -> T) -> T
val change_yield: theory option -> (T -> 'a * T) -> 'a * T
end;
signature PRIVATE_CODE =
sig
include CODE
val declare_data: Any.T -> serial
val change_yield_data: serial * ('a -> Any.T) * (Any.T -> 'a)
-> theory -> ('a -> 'b * 'a) -> 'b * 'a
end;
structure Code : PRIVATE_CODE =
struct
(** auxiliary **)
(* printing *)
fun string_of_typ thy =
Syntax.string_of_typ (Config.put show_sorts true (Syntax.init_pretty_global thy));
fun string_of_const thy c =
let val ctxt = Proof_Context.init_global thy in
case Axclass.inst_of_param thy c of
SOME (c, tyco) =>
Proof_Context.extern_const ctxt c ^ " " ^ enclose "[" "]"
(Proof_Context.extern_type ctxt tyco)
| NONE => Proof_Context.extern_const ctxt c
end;
(* constants *)
fun const_typ thy = Term.strip_sortsT o Sign.the_const_type thy;
fun args_number thy = length o binder_types o const_typ thy;
fun devarify ty =
let
val tys = build (fold_atyps (fn TVar vi_sort => AList.update (op =) vi_sort) ty);
val vs = Name.invent_global_types (length tys);
val mapping = map2 (fn v => fn (vi, sort) => (vi, TFree (v, sort))) vs tys;
in Term.typ_subst_TVars mapping ty end;
fun typscheme thy (c, ty) =
(map dest_TFree (Sign.const_typargs thy (c, ty)), Term.strip_sortsT ty);
fun typscheme_equiv (ty1, ty2) =
Type.raw_instance (devarify ty1, ty2) andalso Type.raw_instance (devarify ty2, ty1);
fun check_bare_const thy t = case try dest_Const t
of SOME c_ty => c_ty
| NONE => error ("Not a constant: " ^ Syntax.string_of_term_global thy t);
fun check_unoverload thy (c, ty) =
let
val c' = Axclass.unoverload_const thy (c, ty);
val ty_decl = const_typ thy c';
in
if typscheme_equiv (ty_decl, Logic.varifyT_global ty)
then c'
else
error ("Type\n" ^ string_of_typ thy ty ^
"\nof constant " ^ quote c ^
"\nis too specific compared to declared type\n" ^
string_of_typ thy ty_decl)
end;
fun check_const thy = check_unoverload thy o check_bare_const thy;
fun read_bare_const thy = check_bare_const thy o Syntax.read_term_global thy;
fun read_const thy = check_unoverload thy o read_bare_const thy;
(** executable specifications **)
(* types *)
datatype type_spec = Constructors of {
constructors: (string * ((string * sort) list * typ list)) list,
case_combinators: string list}
| Abstractor of {
abs_rep: thm,
abstractor: string * ((string * sort) list * typ),
projection: string,
more_abstract_functions: string list};
fun concrete_constructors_of (Constructors {constructors, ...}) =
constructors
| concrete_constructors_of _ =
[];
fun constructors_of (Constructors {constructors, ...}) =
(constructors, false)
| constructors_of (Abstractor {abstractor = (co, (vs, ty)), ...}) =
([(co, (vs, [ty]))], true);
fun case_combinators_of (Constructors {case_combinators, ...}) =
case_combinators
| case_combinators_of (Abstractor _) =
[];
fun add_case_combinator c (vs, Constructors {constructors, case_combinators}) =
(vs, Constructors {constructors = constructors,
case_combinators = insert (op =) c case_combinators});
fun projection_of (Constructors _) =
NONE
| projection_of (Abstractor {projection, ...}) =
SOME projection;
fun abstract_functions_of (Constructors _) =
[]
| abstract_functions_of (Abstractor {more_abstract_functions, projection, ...}) =
projection :: more_abstract_functions;
fun add_abstract_function c (vs, Abstractor {abs_rep, abstractor, projection, more_abstract_functions}) =
(vs, Abstractor {abs_rep = abs_rep, abstractor = abstractor, projection = projection,
more_abstract_functions = insert (op =) c more_abstract_functions});
fun join_same_types' (Constructors {constructors, case_combinators = case_combinators1},
Constructors {case_combinators = case_combinators2, ...}) =
Constructors {constructors = constructors,
case_combinators = merge (op =) (case_combinators1, case_combinators2)}
| join_same_types' (Abstractor {abs_rep, abstractor, projection, more_abstract_functions = more_abstract_functions1},
Abstractor {more_abstract_functions = more_abstract_functions2, ...}) =
Abstractor {abs_rep = abs_rep, abstractor = abstractor, projection = projection,
more_abstract_functions = merge (op =) (more_abstract_functions1, more_abstract_functions2)};
fun join_same_types ((vs, spec1), (_, spec2)) = (vs, join_same_types' (spec1, spec2));
(* functions *)
datatype fun_spec =
Eqns of bool * (thm * bool) list
| Proj of term * (string * string)
| Abstr of thm * (string * string);
val unimplemented = Eqns (true, []);
fun is_unimplemented (Eqns (true, [])) = true
| is_unimplemented _ = false;
fun is_default (Eqns (true, _)) = true
| is_default _ = false;
val aborting = Eqns (false, []);
fun associated_abstype (Proj (_, tyco_abs)) = SOME tyco_abs
| associated_abstype (Abstr (_, tyco_abs)) = SOME tyco_abs
| associated_abstype _ = NONE;
(* cases *)
type case_schema = int * (int * (string * int) option list);
datatype case_spec =
No_Case
| Case of {schema: case_schema, tycos: string list, cong: thm}
| Undefined;
fun associated_datatypes (Case {tycos, schema = (_, (_, raw_cos)), ...}) = (tycos, map fst (map_filter I raw_cos))
| associated_datatypes _ = ([], []);
(** background theory data store **)
(* historized declaration data *)
structure History =
struct
type 'a T = {
entry: 'a,
suppressed: bool, (*incompatible entries are merely suppressed after theory merge but sustain*)
history: serial list (*explicit trace of declaration history supports non-monotonic declarations*)
} Symtab.table;
fun some_entry (SOME {suppressed = false, entry, ...}) = SOME entry
| some_entry _ = NONE;
fun lookup table =
Symtab.lookup table #> some_entry;
fun register key entry table =
if is_some (Symtab.lookup table key)
then Symtab.map_entry key
(fn {history, ...} => {entry = entry, suppressed = false, history = serial () :: history}) table
else Symtab.update (key, {entry = entry, suppressed = false, history = [serial ()]}) table;
fun modify_entry key f = Symtab.map_entry key
(fn {entry, suppressed, history} => {entry = f entry, suppressed = suppressed, history = history});
fun all table = Symtab.dest table
|> map_filter (fn (key, {entry, suppressed = false, ...}) => SOME (key, entry) | _ => NONE);
local
fun merge_history join_same
({entry = entry1, history = history1, ...}, {entry = entry2, history = history2, ...}) =
let
val history = merge (op =) (history1, history2);
val entry = if hd history1 = hd history2 then join_same (entry1, entry2)
else if hd history = hd history1 then entry1 else entry2;
in {entry = entry, suppressed = false, history = history} end;
in
fun join join_same tables = Symtab.join (K (merge_history join_same)) tables;
fun suppress key = Symtab.map_entry key
(fn {entry, history, ...} => {entry = entry, suppressed = true, history = history});
fun suppress_except f = Symtab.map (fn key => fn {entry, suppressed, history} =>
{entry = entry, suppressed = suppressed orelse (not o f) (key, entry), history = history});
end;
end;
datatype specs = Specs of {
types: ((string * sort) list * type_spec) History.T,
pending_eqns: (thm * bool) list Symtab.table,
functions: fun_spec History.T,
cases: case_spec History.T
};
fun types_of (Specs {types, ...}) = types;
fun pending_eqns_of (Specs {pending_eqns, ...}) = pending_eqns;
fun functions_of (Specs {functions, ...}) = functions;
fun cases_of (Specs {cases, ...}) = cases;
fun make_specs (types, ((pending_eqns, functions), cases)) =
Specs {types = types, pending_eqns = pending_eqns,
functions = functions, cases = cases};
val empty_specs =
make_specs (Symtab.empty, ((Symtab.empty, Symtab.empty), Symtab.empty));
fun map_specs f (Specs {types = types, pending_eqns = pending_eqns,
functions = functions, cases = cases}) =
make_specs (f (types, ((pending_eqns, functions), cases)));
fun merge_specs (Specs {types = types1, pending_eqns = _,
functions = functions1, cases = cases1},
Specs {types = types2, pending_eqns = _,
functions = functions2, cases = cases2}) =
let
val types = History.join join_same_types (types1, types2);
val all_types = map (snd o snd) (History.all types);
fun check_abstype (c, fun_spec) = case associated_abstype fun_spec of
NONE => true
| SOME (tyco, abs) => (case History.lookup types tyco of
NONE => false
| SOME (_, Constructors _) => false
| SOME (_, Abstractor {abstractor = (abs', _), projection, more_abstract_functions, ...}) =>
abs = abs' andalso (c = projection orelse member (op =) more_abstract_functions c));
fun check_datatypes (_, case_spec) =
let
val (tycos, required_constructors) = associated_datatypes case_spec;
val allowed_constructors =
tycos
|> maps (these o Option.map (concrete_constructors_of o snd) o History.lookup types)
|> map fst;
in subset (op =) (required_constructors, allowed_constructors) end;
val all_constructors =
maps (fst o constructors_of) all_types;
val functions = History.join fst (functions1, functions2)
|> fold (History.suppress o fst) all_constructors
|> History.suppress_except check_abstype;
val cases = History.join fst (cases1, cases2)
|> History.suppress_except check_datatypes;
in make_specs (types, ((Symtab.empty, functions), cases)) end;
val map_types = map_specs o apfst;
val map_pending_eqns = map_specs o apsnd o apfst o apfst;
val map_functions = map_specs o apsnd o apfst o apsnd;
val map_cases = map_specs o apsnd o apsnd;
(* data slots dependent on executable code *)
(*private copy avoids potential conflict of table exceptions*)
structure Datatab = Table(type key = int val ord = int_ord);
local
type kind = {empty: Any.T};
val kinds = Synchronized.var "Code_Data" (Datatab.empty: kind Datatab.table);
fun invoke f k =
(case Datatab.lookup (Synchronized.value kinds) k of
SOME kind => f kind
| NONE => raise Fail "Invalid code data identifier");
in
fun declare_data empty =
let
val k = serial ();
val kind = {empty = empty};
val _ = Synchronized.change kinds (Datatab.update (k, kind));
in k end;
fun invoke_init k = invoke (fn kind => #empty kind) k;
end; (*local*)
(* global theory store *)
local
type data = Any.T Datatab.table;
fun make_dataref () =
Synchronized.var "code data" (NONE : (data * Context.theory_id) option);
structure Code_Data = Theory_Data
(
type T = specs * (string * (data * Context.theory_id) option Synchronized.var);
val empty =
(empty_specs, (Context.theory_long_name (Context.the_global_context ()), make_dataref ()));
fun merge ((specs1, dataref), (specs2, _)) =
(merge_specs (specs1, specs2), dataref);
);
fun init_dataref thy =
let val thy_name = Context.theory_long_name thy in
if #1 (#2 (Code_Data.get thy)) = thy_name then NONE
else SOME ((Code_Data.map o apsnd) (K (thy_name, make_dataref ())) thy)
end;
in
val _ = Theory.setup (Theory.at_begin init_dataref);
(* access to executable specifications *)
val specs_of : theory -> specs = fst o Code_Data.get;
fun modify_specs f thy =
let val thy_name = Context.theory_long_name thy
in Code_Data.map (fn (specs, _) => (f specs, (thy_name, make_dataref ()))) thy end;
(* access to data dependent on executable specifications *)
fun change_yield_data (kind, mk, dest) theory f =
let
val dataref = #2 (#2 (Code_Data.get theory));
val (datatab, thy_id) = case Synchronized.value dataref
of SOME (datatab, thy_id) =>
if Context.eq_thy_id (Context.theory_id theory, thy_id)
then (datatab, thy_id)
else (Datatab.empty, Context.theory_id theory)
| NONE => (Datatab.empty, Context.theory_id theory)
val data = case Datatab.lookup datatab kind
of SOME data => data
| NONE => invoke_init kind;
val result as (_, data') = f (dest data);
val _ = Synchronized.change dataref
((K o SOME) (Datatab.update (kind, mk data') datatab, thy_id));
in result end;
end; (*local*)
(* pending function equations *)
(* Ideally, *all* equations implementing a functions would be treated as
*one* atomic declaration; unfortunately, we cannot implement this:
the too-well-established declaration interface are Isar attributes
which operate on *one* single theorem. Hence we treat such Isar
declarations as "pending" and historize them as proper declarations
at the end of each theory. *)
fun modify_pending_eqns c f specs =
let
val existing_eqns = case History.lookup (functions_of specs) c of
SOME (Eqns (false, eqns)) => eqns
| _ => [];
in
specs
|> map_pending_eqns (Symtab.map_default (c, existing_eqns) f)
end;
fun register_fun_spec c spec =
map_pending_eqns (Symtab.delete_safe c)
#> map_functions (History.register c spec);
fun lookup_fun_spec specs c =
case Symtab.lookup (pending_eqns_of specs) c of
SOME eqns => Eqns (false, eqns)
| NONE => (case History.lookup (functions_of specs) c of
SOME spec => spec
| NONE => unimplemented);
fun lookup_proper_fun_spec specs c =
let
val spec = lookup_fun_spec specs c
in
if is_unimplemented spec then NONE else SOME spec
end;
fun all_fun_specs specs =
map_filter (fn c => Option.map (pair c) (lookup_proper_fun_spec specs c))
(union (op =)
((Symtab.keys o pending_eqns_of) specs)
((Symtab.keys o functions_of) specs));
fun historize_pending_fun_specs thy =
let
val pending_eqns = (pending_eqns_of o specs_of) thy;
in if Symtab.is_empty pending_eqns
then
NONE
else
thy
|> modify_specs (map_functions
(Symtab.fold (fn (c, eqs) => History.register c (Eqns (false, eqs))) pending_eqns)
#> map_pending_eqns (K Symtab.empty))
|> SOME
end;
val _ = Theory.setup (Theory.at_end historize_pending_fun_specs);
(** foundation **)
(* types *)
fun no_constr thy s (c, ty) = error ("Not a datatype constructor:\n" ^ string_of_const thy c
^ " :: " ^ string_of_typ thy ty ^ "\n" ^ enclose "(" ")" s);
fun analyze_constructor thy (c, ty) =
let
val _ = Thm.global_cterm_of thy (Const (c, ty));
val ty_decl = devarify (const_typ thy c);
fun last_typ c_ty ty =
let
val tfrees = Term.add_tfreesT ty [];
val (tyco, vs) = (apsnd o map) dest_TFree (dest_Type (body_type ty))
handle TYPE _ => no_constr thy "bad type" c_ty
val _ = if tyco = "fun" then no_constr thy "bad type" c_ty else ();
val _ =
if has_duplicates (eq_fst (op =)) vs
then no_constr thy "duplicate type variables in datatype" c_ty else ();
val _ =
if length tfrees <> length vs
then no_constr thy "type variables missing in datatype" c_ty else ();
in (tyco, vs) end;
val (tyco, _) = last_typ (c, ty) ty_decl;
val (_, vs) = last_typ (c, ty) ty;
in ((tyco, map snd vs), (c, (map fst vs, ty))) end;
fun constrset_of_consts thy consts =
let
val _ = map (fn (c, _) => if (is_some o Axclass.class_of_param thy) c
then error ("Is a class parameter: " ^ string_of_const thy c) else ()) consts;
val raw_constructors = map (analyze_constructor thy) consts;
val tyco = case distinct (op =) (map (fst o fst) raw_constructors)
of [tyco] => tyco
| [] => error "Empty constructor set"
| tycos => error ("Different type constructors in constructor set: " ^ commas_quote tycos)
val vs = Name.invent_global_types (Sign.arity_number thy tyco);
fun inst vs' (c, (vs, ty)) =
let
val the_v = the o AList.lookup (op =) (vs ~~ vs');
val ty' = map_type_tfree (fn (v, _) => TFree (the_v v, [])) ty;
val (vs'', ty'') = typscheme thy (c, ty');
in (c, (vs'', binder_types ty'')) end;
val constructors = map (inst vs o snd) raw_constructors;
in (tyco, (map (rpair []) vs, constructors)) end;
fun lookup_vs_type_spec thy = History.lookup ((types_of o specs_of) thy);
type constructors =
(string * sort) list * (string * ((string * sort) list * typ list)) list;
fun get_type thy tyco = case lookup_vs_type_spec thy tyco
of SOME (vs, type_spec) => apfst (pair vs) (constructors_of type_spec)
| NONE => Sign.arity_number thy tyco
|> Name.invent_global_types
|> map (rpair [])
|> rpair []
|> rpair false;
type abs_type =
(string * sort) list * {abs_rep: thm, abstractor: string * ((string * sort) list * typ), projection: string};
fun get_abstype_spec thy tyco = case lookup_vs_type_spec thy tyco of
SOME (vs, Abstractor {abs_rep, abstractor, projection, ...}) =>
(vs, {abs_rep = Thm.transfer thy abs_rep, abstractor = abstractor, projection = projection})
| _ => error ("Not an abstract type: " ^ tyco);
fun get_type_of_constr_or_abstr thy c =
case (body_type o const_typ thy) c
of Type (tyco, _) => let val ((_, cos), abstract) = get_type thy tyco
in if member (op =) (map fst cos) c then SOME (tyco, abstract) else NONE end
| _ => NONE;
fun is_constr thy c = case get_type_of_constr_or_abstr thy c
of SOME (_, false) => true
| _ => false;
fun is_abstr thy c = case get_type_of_constr_or_abstr thy c
of SOME (_, true) => true
| _ => false;
(* bare code equations *)
(* convention for variables:
?x ?'a for free-floating theorems (e.g. in the data store)
?x 'a for certificates
x 'a for final representation of equations
*)
exception BAD_THM of string;
datatype strictness = Silent | Liberal | Strict
fun handle_strictness thm_of f strictness thy x = SOME (f x)
handle BAD_THM msg => case strictness of
Silent => NONE
| Liberal => (warning (msg ^ ", in theorem:\n" ^ Thm.string_of_thm_global thy (thm_of x)); NONE)
| Strict => error (msg ^ ", in theorem:\n" ^ Thm.string_of_thm_global thy (thm_of x));
fun is_linear thm =
let
val (_, args) = (strip_comb o fst o Logic.dest_equals o Thm.plain_prop_of) thm
in
not (has_duplicates (op =) ((fold o fold_aterms)
(fn Var (v, _) => cons v | _ => I) args []))
end;
fun check_decl_ty thy (c, ty) =
let
val ty_decl = const_typ thy c;
in if typscheme_equiv (ty_decl, ty) then ()
else raise BAD_THM ("Type\n" ^ string_of_typ thy ty
^ "\nof constant " ^ quote c
^ "\nis too specific compared to declared type\n"
^ string_of_typ thy ty_decl)
end;
fun check_eqn thy {allow_nonlinear, allow_consts, allow_pats} thm (lhs, rhs) =
let
fun vars_of t = fold_aterms (fn Var (v, _) => insert (op =) v
| Free _ => raise BAD_THM "Illegal free variable"
| _ => I) t [];
fun tvars_of t = fold_term_types (fn _ =>
fold_atyps (fn TVar (v, _) => insert (op =) v
| TFree _ => raise BAD_THM "Illegal free type variable")) t [];
val lhs_vs = vars_of lhs;
val rhs_vs = vars_of rhs;
val lhs_tvs = tvars_of lhs;
val rhs_tvs = tvars_of rhs;
val _ = if null (subtract (op =) lhs_vs rhs_vs)
then ()
else raise BAD_THM "Free variables on right hand side of equation";
val _ = if null (subtract (op =) lhs_tvs rhs_tvs)
then ()
else raise BAD_THM "Free type variables on right hand side of equation";
val (head, args) = strip_comb lhs;
val (c, ty) = case head
of Const (c_ty as (_, ty)) => (Axclass.unoverload_const thy c_ty, ty)
| _ => raise BAD_THM "Equation not headed by constant";
fun check _ (Abs _) = raise BAD_THM "Abstraction on left hand side of equation"
| check 0 (Var _) = ()
| check _ (Var _) = raise BAD_THM "Variable with application on left hand side of equation"
| check n (t1 $ t2) = (check (n+1) t1; check 0 t2)
| check n (Const (c_ty as (c, ty))) =
if allow_pats then let
val c' = Axclass.unoverload_const thy c_ty
in if n = (length o binder_types) ty
then if allow_consts orelse is_constr thy c'
then ()
else raise BAD_THM (quote c ^ " is not a constructor, on left hand side of equation")
else raise BAD_THM ("Partially applied constant " ^ quote c ^ " on left hand side of equation")
end else raise BAD_THM ("Pattern not allowed here, but constant " ^ quote c ^ " encountered on left hand side of equation")
val _ = map (check 0) args;
val _ = if allow_nonlinear orelse is_linear thm then ()
else raise BAD_THM "Duplicate variables on left hand side of equation";
val _ = if (is_none o Axclass.class_of_param thy) c then ()
else raise BAD_THM "Overloaded constant as head in equation";
val _ = if not (is_constr thy c) then ()
else raise BAD_THM "Constructor as head in equation";
val _ = if not (is_abstr thy c) then ()
else raise BAD_THM "Abstractor as head in equation";
val _ = check_decl_ty thy (c, ty);
val _ = case strip_type ty of
(Type (tyco, _) :: _, _) => (case lookup_vs_type_spec thy tyco of
SOME (_, type_spec) => (case projection_of type_spec of
SOME proj =>
if c = proj
then raise BAD_THM "Projection as head in equation"
else ()
| _ => ())
| _ => ())
| _ => ();
in () end;
local
fun raw_assert_eqn thy check_patterns (thm, proper) =
let
val (lhs, rhs) = (Logic.dest_equals o Thm.plain_prop_of) thm
handle TERM _ => raise BAD_THM "Not an equation"
| THM _ => raise BAD_THM "Not a proper equation";
val _ = check_eqn thy {allow_nonlinear = not proper,
allow_consts = not (proper andalso check_patterns), allow_pats = true} thm (lhs, rhs);
in (thm, proper) end;
fun raw_assert_abs_eqn thy some_tyco thm =
let
val (full_lhs, rhs) = (Logic.dest_equals o Thm.plain_prop_of) thm
handle TERM _ => raise BAD_THM "Not an equation"
| THM _ => raise BAD_THM "Not a proper equation";
val (proj_t, lhs) = dest_comb full_lhs
handle TERM _ => raise BAD_THM "Not an abstract equation";
val (proj, ty) = dest_Const proj_t
handle TERM _ => raise BAD_THM "Not an abstract equation";
val (tyco, Ts) = (dest_Type o domain_type) ty
handle TERM _ => raise BAD_THM "Not an abstract equation"
| TYPE _ => raise BAD_THM "Not an abstract equation";
val _ = case some_tyco of SOME tyco' => if tyco = tyco' then ()
else raise BAD_THM ("Abstract type mismatch:" ^ quote tyco ^ " vs. " ^ quote tyco')
| NONE => ();
val (vs, proj', (abs', _)) = case lookup_vs_type_spec thy tyco
of SOME (vs, Abstractor spec) => (vs, #projection spec, #abstractor spec)
| _ => raise BAD_THM ("Not an abstract type: " ^ tyco);
val _ = if proj = proj' then ()
else raise BAD_THM ("Projection mismatch: " ^ quote proj ^ " vs. " ^ quote proj');
val _ = check_eqn thy {allow_nonlinear = false,
allow_consts = false, allow_pats = false} thm (lhs, rhs);
val _ = if ListPair.all (fn (T, (_, sort)) => Sign.of_sort thy (T, sort)) (Ts, vs) then ()
else error ("Type arguments do not satisfy sort constraints of abstype certificate.");
in (thm, (tyco, abs')) end;
in
fun generic_assert_eqn strictness thy check_patterns eqn =
handle_strictness fst (raw_assert_eqn thy check_patterns) strictness thy eqn;
fun generic_assert_abs_eqn strictness thy check_patterns thm =
handle_strictness I (raw_assert_abs_eqn thy check_patterns) strictness thy thm;
end;
fun assert_eqn thy = the o generic_assert_eqn Strict thy true;
fun assert_abs_eqn thy some_tyco = the o generic_assert_abs_eqn Strict thy some_tyco;
val head_eqn = dest_Const o fst o strip_comb o fst o Logic.dest_equals o Thm.plain_prop_of;
fun const_typ_eqn thy thm =
let
val (c, ty) = head_eqn thm;
val c' = Axclass.unoverload_const thy (c, ty);
(*permissive wrt. to overloaded constants!*)
in (c', ty) end;
fun const_eqn thy = fst o const_typ_eqn thy;
fun const_abs_eqn thy = Axclass.unoverload_const thy o dest_Const o fst o strip_comb o snd
o dest_comb o fst o Logic.dest_equals o Thm.plain_prop_of;
fun mk_proj tyco vs ty abs rep =
let
val ty_abs = Type (tyco, map TFree vs);
val xarg = Var (("x", 0), ty);
in Logic.mk_equals (Const (rep, ty_abs --> ty) $ (Const (abs, ty --> ty_abs) $ xarg), xarg) end;
(* technical transformations of code equations *)
fun meta_rewrite thy = Local_Defs.meta_rewrite_rule (Proof_Context.init_global thy);
fun same_arity thy thms =
let
val lhs_rhss = map (Logic.dest_equals o Thm.plain_prop_of) thms;
val k = fold (Integer.max o length o snd o strip_comb o fst) lhs_rhss 0;
fun expand_eta (lhs, rhs) thm =
let
val l = k - length (snd (strip_comb lhs));
val (raw_vars, _) = Term.strip_abs_eta l rhs;
val vars = burrow_fst (Name.variant_list (map (fst o fst) (Term.add_vars lhs [])))
raw_vars;
fun expand (v, ty) thm = Drule.fun_cong_rule thm
(Thm.global_cterm_of thy (Var ((v, 0), ty)));
in
thm
|> fold expand vars
|> Conv.fconv_rule Drule.beta_eta_conversion
end;
in map2 expand_eta lhs_rhss thms end;
fun mk_desymbolization pre post mk vs =
let
val names = map (pre o fst o fst) vs
|> map (Name.desymbolize (SOME false))
|> Name.variant_list []
|> map post;
in map_filter (fn (((v, i), x), v') =>
if v = v' andalso i = 0 then NONE
else SOME (((v, i), x), mk ((v', 0), x))) (vs ~~ names)
end;
fun desymbolize_tvars thy thms =
let
val tvs = build (fold (Term.add_tvars o Thm.prop_of) thms);
val instT =
mk_desymbolization (unprefix "'") (prefix "'") (Thm.global_ctyp_of thy o TVar) tvs;
in map (Thm.instantiate (TVars.make instT, Vars.empty)) thms end;
fun desymbolize_vars thy thm =
let
val vs = Term.add_vars (Thm.prop_of thm) [];
val inst = mk_desymbolization I I (Thm.global_cterm_of thy o Var) vs;
in Thm.instantiate (TVars.empty, Vars.make inst) thm end;
fun canonize_thms thy = desymbolize_tvars thy #> same_arity thy #> map (desymbolize_vars thy);
(* preparation and classification of code equations *)
fun prep_eqn strictness thy =
apfst (meta_rewrite thy)
#> generic_assert_eqn strictness thy false
#> Option.map (fn eqn => (const_eqn thy (fst eqn), eqn));
fun prep_eqns strictness thy =
map_filter (prep_eqn strictness thy)
#> AList.group (op =);
fun prep_abs_eqn strictness thy =
meta_rewrite thy
#> generic_assert_abs_eqn strictness thy NONE
#> Option.map (fn abs_eqn => (const_abs_eqn thy (fst abs_eqn), abs_eqn));
fun prep_maybe_abs_eqn thy raw_thm =
let
val thm = meta_rewrite thy raw_thm;
val some_abs_thm = generic_assert_abs_eqn Silent thy NONE thm;
in case some_abs_thm of
SOME (thm, tyco) => SOME (const_abs_eqn thy thm, ((thm, true), SOME tyco))
| NONE => generic_assert_eqn Liberal thy false (thm, false)
|> Option.map (fn (thm, _) => (const_eqn thy thm, ((thm, is_linear thm), NONE)))
end;
(* abstype certificates *)
local
fun raw_abstype_cert thy proto_thm =
let
val thm = (Axclass.unoverload (Proof_Context.init_global thy) o meta_rewrite thy) proto_thm;
val (lhs, rhs) = Logic.dest_equals (Thm.plain_prop_of thm)
handle TERM _ => raise BAD_THM "Not an equation"
| THM _ => raise BAD_THM "Not a proper equation";
val ((abs, raw_ty), ((rep, rep_ty), param)) = (apsnd (apfst dest_Const o dest_comb)
o apfst dest_Const o dest_comb) lhs
handle TERM _ => raise BAD_THM "Not an abstype certificate";
val _ = apply2 (fn c => if (is_some o Axclass.class_of_param thy) c
then error ("Is a class parameter: " ^ string_of_const thy c) else ()) (abs, rep);
val _ = check_decl_ty thy (abs, raw_ty);
val _ = check_decl_ty thy (rep, rep_ty);
val _ = if length (binder_types raw_ty) = 1
then ()
else raise BAD_THM "Bad type for abstract constructor";
val _ = (fst o dest_Var) param
handle TERM _ => raise BAD_THM "Not an abstype certificate";
val _ = if param = rhs then () else raise BAD_THM "Not an abstype certificate";
val ((tyco, sorts), (abs, (vs, ty'))) =
analyze_constructor thy (abs, devarify raw_ty);
val ty = domain_type ty';
val (vs', _) = typscheme thy (abs, ty');
in (tyco, (vs ~~ sorts, ((abs, (vs', ty)), (rep, thm)))) end;
in
fun check_abstype_cert strictness thy proto_thm =
handle_strictness I (raw_abstype_cert thy) strictness thy proto_thm;
end;
(* code equation certificates *)
fun build_head thy (c, ty) =
Thm.global_cterm_of thy (Logic.mk_equals (Free ("HEAD", ty), Const (c, ty)));
fun get_head thy cert_thm =
let
val [head] = Thm.chyps_of cert_thm;
val (_, Const (c, ty)) = (Logic.dest_equals o Thm.term_of) head;
in (typscheme thy (c, ty), head) end;
fun typscheme_projection thy =
typscheme thy o dest_Const o fst o dest_comb o fst o Logic.dest_equals;
fun typscheme_abs thy =
typscheme thy o dest_Const o fst o strip_comb o snd o dest_comb o fst o Logic.dest_equals o Thm.prop_of;
fun constrain_thm thy vs sorts thm =
let
val mapping = map2 (fn (v, sort) => fn sort' =>
(v, Sorts.inter_sort (Sign.classes_of thy) (sort, sort'))) vs sorts;
val instT =
TVars.build
(fold2 (fn (v, sort) => fn (_, sort') =>
TVars.add (((v, 0), sort), Thm.global_ctyp_of thy (TFree (v, sort')))) vs mapping);
val subst = (Term.map_types o map_type_tfree)
(fn (v, _) => TFree (v, the (AList.lookup (op =) mapping v)));
in
thm
|> Thm.varifyT_global
|> Thm.instantiate (instT, Vars.empty)
|> pair subst
end;
fun concretify_abs thy tyco abs_thm =
let
val (_, {abstractor = (c_abs, _), abs_rep, ...}) = get_abstype_spec thy tyco;
val lhs = (fst o Logic.dest_equals o Thm.prop_of) abs_thm
val ty = fastype_of lhs;
val ty_abs = (fastype_of o snd o dest_comb) lhs;
val abs = Thm.global_cterm_of thy (Const (c_abs, ty --> ty_abs));
val raw_concrete_thm = Drule.transitive_thm OF [Thm.symmetric abs_rep, Thm.combination (Thm.reflexive abs) abs_thm];
in (c_abs, (Thm.varifyT_global o zero_var_indexes) raw_concrete_thm) end;
fun add_rhss_of_eqn thy t =
let
val (args, rhs) = (apfst (snd o strip_comb) o Logic.dest_equals) t;
fun add_const (Const (c, ty)) = insert (op =) (c, Sign.const_typargs thy (c, ty))
| add_const _ = I
val add_consts = fold_aterms add_const
in add_consts rhs o fold add_consts args end;
val dest_eqn = apfst (snd o strip_comb) o Logic.dest_equals o Logic.unvarify_global;
abstype cert = Nothing of thm
| Equations of thm * bool list
| Projection of term * string
| Abstract of thm * string
with
fun dummy_thm ctxt c =
let
val thy = Proof_Context.theory_of ctxt;
val raw_ty = devarify (const_typ thy c);
val (vs, _) = typscheme thy (c, raw_ty);
val sortargs = case Axclass.class_of_param thy c
of SOME class => [[class]]
| NONE => (case get_type_of_constr_or_abstr thy c
of SOME (tyco, _) => (map snd o fst o the)
(AList.lookup (op =) ((snd o fst o get_type thy) tyco) c)
| NONE => replicate (length vs) []);
val the_sort = the o AList.lookup (op =) (map fst vs ~~ sortargs);
val ty = map_type_tfree (fn (v, _) => TFree (v, the_sort v)) raw_ty
val chead = build_head thy (c, ty);
in Thm.weaken chead Drule.dummy_thm end;
fun nothing_cert ctxt c = Nothing (dummy_thm ctxt c);
fun cert_of_eqns ctxt c [] = Equations (dummy_thm ctxt c, [])
| cert_of_eqns ctxt c raw_eqns =
let
val thy = Proof_Context.theory_of ctxt;
val eqns = burrow_fst (canonize_thms thy) raw_eqns;
val _ = map (assert_eqn thy) eqns;
val (thms, propers) = split_list eqns;
val _ = map (fn thm => if c = const_eqn thy thm then ()
else error ("Wrong head of code equation,\nexpected constant "
^ string_of_const thy c ^ "\n" ^ Thm.string_of_thm_global thy thm)) thms;
val tvars_of = build_rev o Term.add_tvarsT;
val vss = map (tvars_of o snd o head_eqn) thms;
val inter_sorts =
build o fold (curry (Sorts.inter_sort (Sign.classes_of thy)) o snd);
val sorts = map_transpose inter_sorts vss;
val vts = Name.invent_types_global sorts;
fun instantiate vs =
Thm.instantiate (TVars.make (vs ~~ map (Thm.ctyp_of ctxt o TFree) vts), Vars.empty);
val thms' = map2 instantiate vss thms;
val head_thm = Thm.symmetric (Thm.assume (build_head thy (head_eqn (hd thms'))));
fun head_conv ct = if can Thm.dest_comb ct
then Conv.fun_conv head_conv ct
else Conv.rewr_conv head_thm ct;
val rewrite_head = Conv.fconv_rule (Conv.arg1_conv head_conv);
val cert_thm = Conjunction.intr_balanced (map rewrite_head thms');
in Equations (cert_thm, propers) end;
fun cert_of_proj ctxt proj tyco =
let
val thy = Proof_Context.theory_of ctxt
val (vs, {abstractor = (abs, (_, ty)), projection = proj', ...}) = get_abstype_spec thy tyco;
val _ = if proj = proj' then () else
error ("Wrong head of projection,\nexpected constant " ^ string_of_const thy proj);
in Projection (mk_proj tyco vs ty abs proj, tyco) end;
fun cert_of_abs ctxt tyco c raw_abs_thm =
let
val thy = Proof_Context.theory_of ctxt;
val abs_thm = singleton (canonize_thms thy) raw_abs_thm;
val _ = assert_abs_eqn thy (SOME tyco) abs_thm;
val _ = if c = const_abs_eqn thy abs_thm then ()
else error ("Wrong head of abstract code equation,\nexpected constant "
^ string_of_const thy c ^ "\n" ^ Thm.string_of_thm_global thy abs_thm);
in Abstract (Thm.legacy_freezeT abs_thm, tyco) end;
fun constrain_cert_thm thy sorts cert_thm =
let
val ((vs, _), head) = get_head thy cert_thm;
val (subst, cert_thm') = cert_thm
|> Thm.implies_intr head
|> constrain_thm thy vs sorts;
val head' = Thm.term_of head
|> subst
|> Thm.global_cterm_of thy;
val cert_thm'' = cert_thm'
|> Thm.elim_implies (Thm.assume head');
in cert_thm'' end;
fun constrain_cert thy sorts (Nothing cert_thm) =
Nothing (constrain_cert_thm thy sorts cert_thm)
| constrain_cert thy sorts (Equations (cert_thm, propers)) =
Equations (constrain_cert_thm thy sorts cert_thm, propers)
| constrain_cert _ _ (cert as Projection _) =
cert
| constrain_cert thy sorts (Abstract (abs_thm, tyco)) =
Abstract (snd (constrain_thm thy (fst (typscheme_abs thy abs_thm)) sorts abs_thm), tyco);
fun conclude_cert (Nothing cert_thm) =
Nothing (Thm.close_derivation \<^here> cert_thm |> Thm.trim_context)
| conclude_cert (Equations (cert_thm, propers)) =
Equations (Thm.close_derivation \<^here> cert_thm |> Thm.trim_context, propers)
| conclude_cert (cert as Projection _) =
cert
| conclude_cert (Abstract (abs_thm, tyco)) =
Abstract (Thm.close_derivation \<^here> abs_thm |> Thm.trim_context, tyco);
fun typscheme_of_cert thy (Nothing cert_thm) =
fst (get_head thy cert_thm)
| typscheme_of_cert thy (Equations (cert_thm, _)) =
fst (get_head thy cert_thm)
| typscheme_of_cert thy (Projection (proj, _)) =
typscheme_projection thy proj
| typscheme_of_cert thy (Abstract (abs_thm, _)) =
typscheme_abs thy abs_thm;
fun typargs_deps_of_cert thy (Nothing cert_thm) =
let
val vs = (fst o fst) (get_head thy cert_thm);
in (vs, []) end
| typargs_deps_of_cert thy (Equations (cert_thm, propers)) =
let
val vs = (fst o fst) (get_head thy cert_thm);
val equations = if null propers then [] else
Thm.prop_of cert_thm
|> Logic.dest_conjunction_balanced (length propers);
in (vs, build (fold (add_rhss_of_eqn thy) equations)) end
| typargs_deps_of_cert thy (Projection (t, _)) =
(fst (typscheme_projection thy t), add_rhss_of_eqn thy t [])
| typargs_deps_of_cert thy (Abstract (abs_thm, tyco)) =
let
val vs = fst (typscheme_abs thy abs_thm);
val (_, concrete_thm) = concretify_abs thy tyco abs_thm;
in (vs, add_rhss_of_eqn thy (Logic.unvarify_types_global (Thm.prop_of concrete_thm)) []) end;
fun equations_of_cert thy (cert as Nothing _) =
(typscheme_of_cert thy cert, NONE)
| equations_of_cert thy (cert as Equations (cert_thm, propers)) =
let
val tyscm = typscheme_of_cert thy cert;
val thms = if null propers then [] else
cert_thm
|> Thm.transfer thy
|> Local_Defs.expand [snd (get_head thy cert_thm)]
|> Thm.varifyT_global
|> Conjunction.elim_balanced (length propers);
fun abstractions (args, rhs) = (map (pair NONE) args, (NONE, rhs));
in (tyscm, SOME (map (abstractions o dest_eqn o Thm.prop_of) thms ~~ (map SOME thms ~~ propers))) end
| equations_of_cert thy (Projection (t, tyco)) =
let
val (_, {abstractor = (abs, _), ...}) = get_abstype_spec thy tyco;
val tyscm = typscheme_projection thy t;
val t' = Logic.varify_types_global t;
fun abstractions (args, rhs) = (map (pair (SOME abs)) args, (NONE, rhs));
in (tyscm, SOME [((abstractions o dest_eqn) t', (NONE, true))]) end
| equations_of_cert thy (Abstract (abs_thm, tyco)) =
let
val tyscm = typscheme_abs thy abs_thm;
val (abs, concrete_thm) = concretify_abs thy tyco (Thm.transfer thy abs_thm);
fun abstractions (args, rhs) = (map (pair NONE) args, (SOME abs, rhs));
in
(tyscm, SOME [((abstractions o dest_eqn o Thm.prop_of) concrete_thm,
(SOME (Thm.varifyT_global abs_thm), true))])
end;
fun pretty_cert _ (Nothing _) =
[]
| pretty_cert thy (cert as Equations _) =
(map_filter
(Option.map (Thm.pretty_thm_global thy o
Axclass.overload (Proof_Context.init_global thy)) o fst o snd)
o these o snd o equations_of_cert thy) cert
| pretty_cert thy (Projection (t, _)) =
[Syntax.pretty_term_global thy (Logic.varify_types_global t)]
| pretty_cert thy (Abstract (abs_thm, _)) =
[(Thm.pretty_thm_global thy o
Axclass.overload (Proof_Context.init_global thy) o Thm.varifyT_global) abs_thm];
end;
(* code certificate access with preprocessing *)
fun eqn_conv conv ct =
let
fun lhs_conv ct = if can Thm.dest_comb ct
then Conv.combination_conv lhs_conv conv ct
else Conv.all_conv ct;
in Conv.combination_conv (Conv.arg_conv lhs_conv) conv ct end;
fun rewrite_eqn conv ctxt =
singleton (Variable.trade (K (map (Conv.fconv_rule (conv (Simplifier.rewrite ctxt))))) ctxt)
fun apply_functrans ctxt functrans =
let
fun trace_eqns s eqns = (Pretty.writeln o Pretty.chunks)
(Pretty.str s :: map (Thm.pretty_thm ctxt o fst) eqns);
val tracing = if Config.get ctxt simp_trace then trace_eqns else (K o K) ();
in
tap (tracing "before function transformation")
#> (perhaps o perhaps_loop o perhaps_apply) functrans
#> tap (tracing "after function transformation")
end;
fun preprocess conv ctxt =
rewrite_eqn conv ctxt
#> Axclass.unoverload ctxt;
fun get_cert ctxt functrans c =
case lookup_proper_fun_spec (specs_of (Proof_Context.theory_of ctxt)) c of
NONE => nothing_cert ctxt c
| SOME (Eqns (_, eqns)) => eqns
|> (map o apfst) (Thm.transfer' ctxt)
|> apply_functrans ctxt functrans
|> (map o apfst) (preprocess eqn_conv ctxt)
|> cert_of_eqns ctxt c
| SOME (Proj (_, (tyco, _))) => cert_of_proj ctxt c tyco
| SOME (Abstr (abs_thm, (tyco, _))) => abs_thm
|> Thm.transfer' ctxt
|> preprocess Conv.arg_conv ctxt
|> cert_of_abs ctxt tyco c;
(* case certificates *)
local
fun raw_case_cert thm =
let
val ((head, raw_case_expr), cases) = (apfst Logic.dest_equals
o apsnd Logic.dest_conjunctions o Logic.dest_implies o Thm.plain_prop_of) thm;
val _ = case head of Free _ => ()
| Var _ => ()
| _ => raise TERM ("case_cert", []);
val ([(case_var, _)], case_expr) = Term.strip_abs_eta 1 raw_case_expr;
val (Const (case_const, _), raw_params) = strip_comb case_expr;
val n = find_index (fn Free (v, _) => v = case_var | _ => false) raw_params;
val _ = if n = ~1 then raise TERM ("case_cert", []) else ();
val params = map (fst o dest_Var) (nth_drop n raw_params);
fun dest_case t =
let
val (head' $ t_co, rhs) = Logic.dest_equals t;
val _ = if head' = head then () else raise TERM ("case_cert", []);
val (Const (co, _), args) = strip_comb t_co;
val (Var (param, _), args') = strip_comb rhs;
val _ = if args' = args then () else raise TERM ("case_cert", []);
in (param, co) end;
fun analyze_cases cases =
let
val co_list = build (fold (AList.update (op =) o dest_case) cases);
in map (AList.lookup (op =) co_list) params end;
fun analyze_let t =
let
val (head' $ arg, Var (param', _) $ arg') = Logic.dest_equals t;
val _ = if head' = head then () else raise TERM ("case_cert", []);
val _ = if arg' = arg then () else raise TERM ("case_cert", []);
val _ = if [param'] = params then () else raise TERM ("case_cert", []);
in [] end;
fun analyze (cases as [let_case]) =
(analyze_cases cases handle Bind => analyze_let let_case)
| analyze cases = analyze_cases cases;
in (case_const, (n, analyze cases)) end;
in
fun case_cert thm = raw_case_cert thm
handle Bind => error "bad case certificate"
| TERM _ => error "bad case certificate";
end;
fun lookup_case_spec thy = History.lookup ((cases_of o specs_of) thy);
fun get_case_schema thy c = case lookup_case_spec thy c of
SOME (Case {schema, ...}) => SOME schema
| _ => NONE;
fun get_case_cong thy c = case lookup_case_spec thy c of
SOME (Case {cong, ...}) => SOME cong
| _ => NONE;
fun is_undefined thy c = case lookup_case_spec thy c of
SOME Undefined => true
| _ => false;
(* diagnostic *)
fun print_codesetup thy =
let
val ctxt = Proof_Context.init_global thy;
val specs = specs_of thy;
fun pretty_equations const thms =
(Pretty.block o Pretty.fbreaks)
(Pretty.str (string_of_const thy const) :: map (Thm.pretty_thm_item ctxt) thms);
fun pretty_function (const, Eqns (_, eqns)) =
pretty_equations const (map fst eqns)
| pretty_function (const, Proj (proj, _)) = Pretty.block
[Pretty.str (string_of_const thy const), Pretty.fbrk, Syntax.pretty_term ctxt proj]
| pretty_function (const, Abstr (thm, _)) = pretty_equations const [thm];
fun pretty_typ (tyco, vs) = Pretty.str
(string_of_typ thy (Type (tyco, map TFree vs)));
fun pretty_type_spec (typ, (cos, abstract)) = if null cos
then pretty_typ typ
else (Pretty.block o Pretty.breaks) (
pretty_typ typ
:: Pretty.str "="
:: (if abstract then [Pretty.str "(abstract)"] else [])
@ separate (Pretty.str "|") (map (fn (c, (_, [])) => Pretty.str (string_of_const thy c)
| (c, (_, tys)) =>
(Pretty.block o Pretty.breaks)
(Pretty.str (string_of_const thy c)
:: Pretty.str "of"
:: map (Pretty.quote o Syntax.pretty_typ_global thy) tys)) cos)
);
fun pretty_case_param NONE = "<ignored>"
| pretty_case_param (SOME (c, _)) = string_of_const thy c
fun pretty_case (const, Case {schema = (_, (_, [])), ...}) =
Pretty.str (string_of_const thy const)
| pretty_case (const, Case {schema = (_, (_, cos)), ...}) =
(Pretty.block o Pretty.breaks) [
Pretty.str (string_of_const thy const), Pretty.str "with",
(Pretty.block o Pretty.commas o map (Pretty.str o pretty_case_param)) cos]
| pretty_case (const, Undefined) =
(Pretty.block o Pretty.breaks) [
Pretty.str (string_of_const thy const), Pretty.str "<undefined>"];
val functions = all_fun_specs specs
|> sort (string_ord o apply2 fst);
val types = History.all (types_of specs)
|> map (fn (tyco, (vs, spec)) =>
((tyco, vs), constructors_of spec))
|> sort (string_ord o apply2 (fst o fst));
val cases = History.all (cases_of specs)
|> filter (fn (_, No_Case) => false | _ => true)
|> sort (string_ord o apply2 fst);
in
Pretty.writeln_chunks [
Pretty.block (
Pretty.str "types:" :: Pretty.fbrk
:: (Pretty.fbreaks o map pretty_type_spec) types
),
Pretty.block (
Pretty.str "functions:" :: Pretty.fbrk
:: (Pretty.fbreaks o map pretty_function) functions
),
Pretty.block (
Pretty.str "cases:" :: Pretty.fbrk
:: (Pretty.fbreaks o map pretty_case) cases
)
]
end;
(** declaration of executable ingredients **)
(* plugins for dependent applications *)
structure Codetype_Plugin = Plugin(type T = string);
val codetype_plugin = Plugin_Name.declare_setup \<^binding>\<open>codetype\<close>;
fun type_interpretation f =
Codetype_Plugin.interpretation codetype_plugin
(fn tyco => Local_Theory.background_theory
(fn thy =>
thy
|> Sign.root_path
|> Sign.add_path (Long_Name.qualifier tyco)
|> f tyco
|> Sign.restore_naming thy));
fun datatype_interpretation f =
type_interpretation (fn tyco => fn thy =>
case get_type thy tyco of
(spec, false) => f (tyco, spec) thy
| (_, true) => thy
);
fun abstype_interpretation f =
type_interpretation (fn tyco => fn thy =>
case try (get_abstype_spec thy) tyco of
SOME spec => f (tyco, spec) thy
| NONE => thy
);
fun register_tyco_for_plugin tyco =
Named_Target.theory_map (Codetype_Plugin.data_default tyco);
(* abstract code declarations *)
fun code_declaration (strictness: strictness) transform f x =
let val x0 = transform Morphism.trim_context_morphism x in
Local_Theory.declaration {syntax = false, pervasive = false, pos = \<^here>}
(fn phi => Context.mapping (f strictness (transform phi x0)) I)
end;
(* types *)
fun invalidate_constructors_of (_, type_spec) =
fold (fn (c, _) => History.register c unimplemented) (fst (constructors_of type_spec));
fun invalidate_abstract_functions_of (_, type_spec) =
fold (fn c => History.register c unimplemented) (abstract_functions_of type_spec);
fun invalidate_case_combinators_of (_, type_spec) =
fold (fn c => History.register c No_Case) (case_combinators_of type_spec);
fun register_type (tyco, vs_typ_spec) specs =
let
val olds = the_list (History.lookup (types_of specs) tyco);
in
specs
|> map_functions (fold invalidate_abstract_functions_of olds
#> invalidate_constructors_of vs_typ_spec)
|> map_cases (fold invalidate_case_combinators_of olds)
|> map_types (History.register tyco vs_typ_spec)
end;
fun declare_datatype_global proto_constrs thy =
let
fun unoverload_const_typ (c, ty) =
(Axclass.unoverload_const thy (c, ty), ty);
val constrs = map unoverload_const_typ proto_constrs;
val (tyco, (vs, cos)) = constrset_of_consts thy constrs;
in
thy
|> modify_specs (register_type
(tyco, (vs, Constructors {constructors = cos, case_combinators = []})))
|> register_tyco_for_plugin tyco
end;
fun declare_datatype_cmd raw_constrs thy =
declare_datatype_global (map (read_bare_const thy) raw_constrs) thy;
fun generic_declare_abstype strictness proto_thm thy =
case check_abstype_cert strictness thy proto_thm of
SOME (tyco, (vs, (abstractor as (abs, (_, ty)), (proj, abs_rep)))) =>
thy
|> modify_specs (register_type
(tyco, (vs, Abstractor {abstractor = abstractor, projection = proj,
abs_rep = Thm.trim_context abs_rep, more_abstract_functions = []}))
#> register_fun_spec proj
(Proj (Logic.varify_types_global (mk_proj tyco vs ty abs proj), (tyco, abs))))
|> register_tyco_for_plugin tyco
| NONE => thy;
val declare_abstype_global = generic_declare_abstype Strict;
val declare_abstype = code_declaration Liberal Morphism.thm generic_declare_abstype;
(* functions *)
(*
strictness wrt. shape of theorem propositions:
* default equations: silent
* using declarations and attributes: warnings (after morphism application!)
* using global declarations (... -> thy -> thy): strict
* internal processing after storage: strict
*)
local
fun subsumptive_add thy verbose (thm, proper) eqns =
let
val args_of = drop_prefix is_Var o rev o snd o strip_comb
o Term.strip_sorts o fst o Logic.dest_equals o Thm.plain_prop_of
o Thm.transfer thy;
val args = args_of thm;
val incr_idx = Logic.incr_indexes ([], Thm.maxidx_of thm + 1);
fun matches_args args' =
let
val k = length args' - length args
in if k >= 0
then Pattern.matchess thy (args, (map incr_idx o drop k) args')
else false
end;
fun drop (thm', proper') = if (proper orelse not proper')
andalso matches_args (args_of thm') then
(if verbose then warning ("Code generator: dropping subsumed code equation\n" ^
Thm.string_of_thm_global thy thm') else (); true)
else false;
in (thm |> Thm.close_derivation \<^here> |> Thm.trim_context, proper) :: filter_out drop eqns end;
fun add_eqn_for (c, eqn) thy =
thy |> modify_specs (modify_pending_eqns c (subsumptive_add thy true eqn));
fun add_eqns_for default (c, proto_eqns) thy =
thy |> modify_specs (fn specs =>
if is_default (lookup_fun_spec specs c) orelse not default
then
let
val eqns = []
|> fold_rev (subsumptive_add thy (not default)) proto_eqns;
in specs |> register_fun_spec c (Eqns (default, eqns)) end
else specs);
fun add_abstract_for (c, (thm, tyco_abs as (tyco, _))) =
modify_specs (register_fun_spec c (Abstr (Thm.close_derivation \<^here> thm |> Thm.trim_context, tyco_abs))
#> map_types (History.modify_entry tyco (add_abstract_function c)))
in
fun generic_declare_eqns default strictness raw_eqns thy =
fold (add_eqns_for default) (prep_eqns strictness thy raw_eqns) thy;
fun generic_add_eqn strictness raw_eqn thy =
fold add_eqn_for (the_list (prep_eqn strictness thy raw_eqn)) thy;
fun generic_declare_abstract_eqn strictness raw_abs_eqn thy =
fold add_abstract_for (the_list (prep_abs_eqn strictness thy raw_abs_eqn)) thy;
fun add_maybe_abs_eqn_liberal thm thy =
case prep_maybe_abs_eqn thy thm
of SOME (c, (eqn, NONE)) => add_eqn_for (c, eqn) thy
| SOME (c, ((thm, _), SOME tyco)) => add_abstract_for (c, (thm, tyco)) thy
| NONE => thy;
end;
val declare_default_eqns_global = generic_declare_eqns true Silent;
val declare_default_eqns = code_declaration Silent (map o apfst o Morphism.thm) (generic_declare_eqns true);
val declare_eqns_global = generic_declare_eqns false Strict;
val declare_eqns = code_declaration Liberal (map o apfst o Morphism.thm) (generic_declare_eqns false);
val add_eqn_global = generic_add_eqn Strict;
fun del_eqn_global thm thy =
case prep_eqn Liberal thy (thm, false) of
SOME (c, (thm, _)) =>
modify_specs (modify_pending_eqns c (filter_out (fn (thm', _) => Thm.eq_thm_prop (thm, thm')))) thy
| NONE => thy;
val declare_abstract_eqn_global = generic_declare_abstract_eqn Strict;
val declare_abstract_eqn = code_declaration Liberal Morphism.thm generic_declare_abstract_eqn;
fun declare_aborting_global c =
modify_specs (register_fun_spec c aborting);
fun declare_unimplemented_global c =
modify_specs (register_fun_spec c unimplemented);
(* cases *)
fun case_cong thy case_const (num_args, (pos, _)) =
let
val ([x, y], ctxt) = fold_map Name.variant ["A", "A'"] Name.context;
val (zs, _) = fold_map Name.variant (replicate (num_args - 1) "") ctxt;
val (ws, vs) = chop pos zs;
val T = devarify (const_typ thy case_const);
val Ts = binder_types T;
val T_cong = nth Ts pos;
fun mk_prem z = Free (z, T_cong);
fun mk_concl z = list_comb (Const (case_const, T), map2 (curry Free) (ws @ z :: vs) Ts);
val (prem, concl) = apply2 Logic.mk_equals (apply2 mk_prem (x, y), apply2 mk_concl (x, y));
in
Goal.prove_sorry_global thy (x :: y :: zs) [prem] concl
(fn {context = ctxt', prems} =>
Simplifier.rewrite_goals_tac ctxt' prems
THEN ALLGOALS (Proof_Context.fact_tac ctxt' [Drule.reflexive_thm]))
end;
fun declare_case_global thm thy =
let
val (case_const, (k, cos)) = case_cert thm;
fun get_type_of_constr c = case get_type_of_constr_or_abstr thy c of
SOME (c, false) => SOME c
| _ => NONE;
val cos_with_tycos =
(map_filter o Option.map) (fn c => (c, get_type_of_constr c)) cos;
val _ = case map_filter (fn (c, NONE) => SOME c | _ => NONE) cos_with_tycos of
[] => ()
| cs => error ("Non-constructor(s) in case certificate: " ^ commas_quote cs);
val tycos = distinct (op =) (map_filter snd cos_with_tycos);
val schema = (1 + Int.max (1, length cos),
(k, (map o Option.map) (fn c => (c, args_number thy c)) cos));
val cong = case_cong thy case_const schema;
in
thy
|> modify_specs (map_cases (History.register case_const
(Case {schema = schema, tycos = tycos, cong = cong}))
#> map_types (fold (fn tyco => History.modify_entry tyco
(add_case_combinator case_const)) tycos))
end;
fun declare_undefined_global c =
(modify_specs o map_cases) (History.register c Undefined);
(* attributes *)
fun code_attribute f = Thm.declaration_attribute
(fn thm => Context.mapping (f thm) I);
fun code_thm_attribute g f =
Scan.lift (g |-- Scan.succeed (code_attribute f));
fun code_const_attribute g f =
Scan.lift (g -- Args.colon) |-- Scan.repeat1 Args.term
>> (fn ts => code_attribute (K (fold (fn t => fn thy => f ((check_const thy o Logic.unvarify_types_global) t) thy) ts)));
val _ = Theory.setup
(let
val code_attribute_parser =
code_thm_attribute (Args.$$$ "equation")
(fn thm => generic_add_eqn Liberal (thm, true))
|| code_thm_attribute (Args.$$$ "nbe")
(fn thm => generic_add_eqn Liberal (thm, false))
|| code_thm_attribute (Args.$$$ "abstract")
(generic_declare_abstract_eqn Liberal)
|| code_thm_attribute (Args.$$$ "abstype")
(generic_declare_abstype Liberal)
|| code_thm_attribute Args.del
del_eqn_global
|| code_const_attribute (Args.$$$ "abort")
declare_aborting_global
|| code_const_attribute (Args.$$$ "drop")
declare_unimplemented_global
|| Scan.succeed (code_attribute
add_maybe_abs_eqn_liberal);
in
Attrib.setup \<^binding>\<open>code\<close> code_attribute_parser
"declare theorems for code generation"
end);
end; (*struct*)
(* type-safe interfaces for data dependent on executable code *)
functor Code_Data(Data: CODE_DATA_ARGS): CODE_DATA =
struct
type T = Data.T;
exception Data of T;
fun dest (Data x) = x
val kind = Code.declare_data (Data Data.empty);
val data_op = (kind, Data, dest);
fun change_yield (SOME thy) f = Code.change_yield_data data_op thy f
| change_yield NONE f = f Data.empty
fun change some_thy f = snd (change_yield some_thy (pair () o f));
end;
structure Code : CODE = struct open Code; end;