(* Title: HOLCF/Porder.thy
ID: $Id$
Author: Franz Regensburger
*)
header {* Partial orders *}
theory Porder
imports Finite_Set
begin
subsection {* Type class for partial orders *}
-- {* introduce a (syntactic) class for the constant @{text "<<"} *}
axclass sq_ord < type
-- {* characteristic constant @{text "<<"} for po *}
consts
"<<" :: "['a,'a::sq_ord] => bool" (infixl "<<" 55)
syntax (xsymbols)
"<<" :: "['a,'a::sq_ord] => bool" (infixl "\<sqsubseteq>" 55)
axclass po < sq_ord
-- {* class axioms: *}
refl_less [iff]: "x \<sqsubseteq> x"
antisym_less: "\<lbrakk>x \<sqsubseteq> y; y \<sqsubseteq> x\<rbrakk> \<Longrightarrow> x = y"
trans_less: "\<lbrakk>x \<sqsubseteq> y; y \<sqsubseteq> z\<rbrakk> \<Longrightarrow> x \<sqsubseteq> z"
text {* minimal fixes least element *}
lemma minimal2UU[OF allI] : "\<forall>x::'a::po. uu \<sqsubseteq> x \<Longrightarrow> uu = (THE u. \<forall>y. u \<sqsubseteq> y)"
by (blast intro: theI2 antisym_less)
text {* the reverse law of anti-symmetry of @{term "op <<"} *}
lemma antisym_less_inverse: "(x::'a::po) = y \<Longrightarrow> x \<sqsubseteq> y \<and> y \<sqsubseteq> x"
by simp
lemma box_less: "\<lbrakk>(a::'a::po) \<sqsubseteq> b; c \<sqsubseteq> a; b \<sqsubseteq> d\<rbrakk> \<Longrightarrow> c \<sqsubseteq> d"
by (rule trans_less [OF trans_less])
lemma po_eq_conv: "((x::'a::po) = y) = (x \<sqsubseteq> y \<and> y \<sqsubseteq> x)"
by (fast elim!: antisym_less_inverse intro!: antisym_less)
lemma rev_trans_less: "\<lbrakk>(y::'a::po) \<sqsubseteq> z; x \<sqsubseteq> y\<rbrakk> \<Longrightarrow> x \<sqsubseteq> z"
by (rule trans_less)
lemma sq_ord_less_eq_trans: "\<lbrakk>a \<sqsubseteq> b; b = c\<rbrakk> \<Longrightarrow> a \<sqsubseteq> c"
by (rule subst)
lemma sq_ord_eq_less_trans: "\<lbrakk>a = b; b \<sqsubseteq> c\<rbrakk> \<Longrightarrow> a \<sqsubseteq> c"
by (rule ssubst)
lemmas HOLCF_trans_rules [trans] =
trans_less
antisym_less
sq_ord_less_eq_trans
sq_ord_eq_less_trans
subsection {* Chains and least upper bounds *}
constdefs
-- {* class definitions *}
is_ub :: "['a set, 'a::po] \<Rightarrow> bool" (infixl "<|" 55)
"S <| x \<equiv> \<forall>y. y \<in> S \<longrightarrow> y \<sqsubseteq> x"
is_lub :: "['a set, 'a::po] \<Rightarrow> bool" (infixl "<<|" 55)
"S <<| x \<equiv> S <| x \<and> (\<forall>u. S <| u \<longrightarrow> x \<sqsubseteq> u)"
-- {* Arbitrary chains are total orders *}
tord :: "'a::po set \<Rightarrow> bool"
"tord S \<equiv> \<forall>x y. x \<in> S \<and> y \<in> S \<longrightarrow> (x \<sqsubseteq> y \<or> y \<sqsubseteq> x)"
-- {* Here we use countable chains and I prefer to code them as functions! *}
chain :: "(nat \<Rightarrow> 'a::po) \<Rightarrow> bool"
"chain F \<equiv> \<forall>i. F i \<sqsubseteq> F (Suc i)"
-- {* finite chains, needed for monotony of continuous functions *}
max_in_chain :: "[nat, nat \<Rightarrow> 'a::po] \<Rightarrow> bool"
"max_in_chain i C \<equiv> \<forall>j. i \<le> j \<longrightarrow> C i = C j"
finite_chain :: "(nat \<Rightarrow> 'a::po) \<Rightarrow> bool"
"finite_chain C \<equiv> chain(C) \<and> (\<exists>i. max_in_chain i C)"
lub :: "'a set \<Rightarrow> 'a::po"
"lub S \<equiv> THE x. S <<| x"
abbreviation
Lub (binder "LUB " 10) where
"LUB n. t n == lub (range t)"
notation (xsymbols)
Lub (binder "\<Squnion> " 10)
text {* lubs are unique *}
lemma unique_lub: "\<lbrakk>S <<| x; S <<| y\<rbrakk> \<Longrightarrow> x = y"
apply (unfold is_lub_def is_ub_def)
apply (blast intro: antisym_less)
done
text {* chains are monotone functions *}
lemma chain_mono [rule_format]: "chain F \<Longrightarrow> x < y \<longrightarrow> F x \<sqsubseteq> F y"
apply (unfold chain_def)
apply (induct_tac y)
apply simp
apply (blast elim: less_SucE intro: trans_less)
done
lemma chain_mono3: "\<lbrakk>chain F; x \<le> y\<rbrakk> \<Longrightarrow> F x \<sqsubseteq> F y"
apply (drule le_imp_less_or_eq)
apply (blast intro: chain_mono)
done
text {* The range of a chain is a totally ordered *}
lemma chain_tord: "chain F \<Longrightarrow> tord (range F)"
apply (unfold tord_def, clarify)
apply (rule nat_less_cases)
apply (fast intro: chain_mono)+
done
text {* technical lemmas about @{term lub} and @{term is_lub} *}
lemmas lub = lub_def [THEN meta_eq_to_obj_eq, standard]
lemma lubI: "M <<| x \<Longrightarrow> M <<| lub M"
apply (unfold lub_def)
apply (rule theI)
apply assumption
apply (erule (1) unique_lub)
done
lemma thelubI: "M <<| l \<Longrightarrow> lub M = l"
by (rule unique_lub [OF lubI])
lemma lub_singleton [simp]: "lub {x} = x"
by (simp add: thelubI is_lub_def is_ub_def)
text {* access to some definition as inference rule *}
lemma is_lubD1: "S <<| x \<Longrightarrow> S <| x"
by (unfold is_lub_def, simp)
lemma is_lub_lub: "\<lbrakk>S <<| x; S <| u\<rbrakk> \<Longrightarrow> x \<sqsubseteq> u"
by (unfold is_lub_def, simp)
lemma is_lubI: "\<lbrakk>S <| x; \<And>u. S <| u \<Longrightarrow> x \<sqsubseteq> u\<rbrakk> \<Longrightarrow> S <<| x"
by (unfold is_lub_def, fast)
lemma chainE: "chain F \<Longrightarrow> F i \<sqsubseteq> F (Suc i)"
by (unfold chain_def, simp)
lemma chainI: "(\<And>i. F i \<sqsubseteq> F (Suc i)) \<Longrightarrow> chain F"
by (unfold chain_def, simp)
lemma chain_shift: "chain Y \<Longrightarrow> chain (\<lambda>i. Y (i + j))"
apply (rule chainI)
apply simp
apply (erule chainE)
done
text {* technical lemmas about (least) upper bounds of chains *}
lemma ub_rangeD: "range S <| x \<Longrightarrow> S i \<sqsubseteq> x"
by (unfold is_ub_def, simp)
lemma ub_rangeI: "(\<And>i. S i \<sqsubseteq> x) \<Longrightarrow> range S <| x"
by (unfold is_ub_def, fast)
lemma is_ub_lub: "range S <<| x \<Longrightarrow> S i \<sqsubseteq> x"
by (rule is_lubD1 [THEN ub_rangeD])
lemma is_ub_range_shift:
"chain S \<Longrightarrow> range (\<lambda>i. S (i + j)) <| x = range S <| x"
apply (rule iffI)
apply (rule ub_rangeI)
apply (rule_tac y="S (i + j)" in trans_less)
apply (erule chain_mono3)
apply (rule le_add1)
apply (erule ub_rangeD)
apply (rule ub_rangeI)
apply (erule ub_rangeD)
done
lemma is_lub_range_shift:
"chain S \<Longrightarrow> range (\<lambda>i. S (i + j)) <<| x = range S <<| x"
by (simp add: is_lub_def is_ub_range_shift)
text {* results about finite chains *}
lemma lub_finch1: "\<lbrakk>chain C; max_in_chain i C\<rbrakk> \<Longrightarrow> range C <<| C i"
apply (unfold max_in_chain_def)
apply (rule is_lubI)
apply (rule ub_rangeI, rename_tac j)
apply (rule_tac x=i and y=j in linorder_le_cases)
apply simp
apply (erule (1) chain_mono3)
apply (erule ub_rangeD)
done
lemma lub_finch2:
"finite_chain C \<Longrightarrow> range C <<| C (LEAST i. max_in_chain i C)"
apply (unfold finite_chain_def)
apply (erule conjE)
apply (erule LeastI2_ex)
apply (erule (1) lub_finch1)
done
lemma finch_imp_finite_range: "finite_chain Y \<Longrightarrow> finite (range Y)"
apply (unfold finite_chain_def, clarify)
apply (rule_tac f="Y" and n="Suc i" in nat_seg_image_imp_finite)
apply (rule equalityI)
apply (rule subsetI)
apply (erule rangeE, rename_tac j)
apply (rule_tac x=i and y=j in linorder_le_cases)
apply (subgoal_tac "Y j = Y i", simp)
apply (simp add: max_in_chain_def)
apply simp
apply fast
done
lemma finite_tord_has_max [rule_format]:
"finite S \<Longrightarrow> S \<noteq> {} \<longrightarrow> tord S \<longrightarrow> (\<exists>y\<in>S. \<forall>x\<in>S. x \<sqsubseteq> y)"
apply (erule finite_induct, simp)
apply (rename_tac a S, clarify)
apply (case_tac "S = {}", simp)
apply (drule (1) mp)
apply (drule mp, simp add: tord_def)
apply (erule bexE, rename_tac z)
apply (subgoal_tac "a \<sqsubseteq> z \<or> z \<sqsubseteq> a")
apply (erule disjE)
apply (rule_tac x="z" in bexI, simp, simp)
apply (rule_tac x="a" in bexI)
apply (clarsimp elim!: rev_trans_less)
apply simp
apply (simp add: tord_def)
done
lemma finite_range_imp_finch:
"\<lbrakk>chain Y; finite (range Y)\<rbrakk> \<Longrightarrow> finite_chain Y"
apply (subgoal_tac "\<exists>y\<in>range Y. \<forall>x\<in>range Y. x \<sqsubseteq> y")
apply (clarsimp, rename_tac i)
apply (subgoal_tac "max_in_chain i Y")
apply (simp add: finite_chain_def exI)
apply (simp add: max_in_chain_def po_eq_conv chain_mono3)
apply (erule finite_tord_has_max, simp)
apply (erule chain_tord)
done
lemma bin_chain: "x \<sqsubseteq> y \<Longrightarrow> chain (\<lambda>i. if i=0 then x else y)"
by (rule chainI, simp)
lemma bin_chainmax:
"x \<sqsubseteq> y \<Longrightarrow> max_in_chain (Suc 0) (\<lambda>i. if i=0 then x else y)"
by (unfold max_in_chain_def, simp)
lemma lub_bin_chain:
"x \<sqsubseteq> y \<Longrightarrow> range (\<lambda>i::nat. if i=0 then x else y) <<| y"
apply (frule bin_chain)
apply (drule bin_chainmax)
apply (drule (1) lub_finch1)
apply simp
done
text {* the maximal element in a chain is its lub *}
lemma lub_chain_maxelem: "\<lbrakk>Y i = c; \<forall>i. Y i \<sqsubseteq> c\<rbrakk> \<Longrightarrow> lub (range Y) = c"
by (blast dest: ub_rangeD intro: thelubI is_lubI ub_rangeI)
text {* the lub of a constant chain is the constant *}
lemma chain_const [simp]: "chain (\<lambda>i. c)"
by (simp add: chainI)
lemma lub_const: "range (\<lambda>x. c) <<| c"
by (blast dest: ub_rangeD intro: is_lubI ub_rangeI)
lemma thelub_const [simp]: "(\<Squnion>i. c) = c"
by (rule lub_const [THEN thelubI])
end