two target language numeral types: integer and natural, as replacement for code_numeral;
former theory HOL/Library/Code_Numeral_Types replaces HOL/Code_Numeral;
refined stack of theories implementing int and/or nat by target language numerals;
reduced number of target language numeral types to exactly one
(* Author: Tobias Nipkow *)
theory Abs_State
imports Abs_Int0
begin
subsubsection "Set-based lattices"
instantiation com :: vars
begin
fun vars_com :: "com \<Rightarrow> vname set" where
"vars com.SKIP = {}" |
"vars (x::=e) = {x} \<union> vars e" |
"vars (c1;c2) = vars c1 \<union> vars c2" |
"vars (IF b THEN c1 ELSE c2) = vars b \<union> vars c1 \<union> vars c2" |
"vars (WHILE b DO c) = vars b \<union> vars c"
instance ..
end
lemma finite_avars: "finite(vars(a::aexp))"
by(induction a) simp_all
lemma finite_bvars: "finite(vars(b::bexp))"
by(induction b) (simp_all add: finite_avars)
lemma finite_cvars: "finite(vars(c::com))"
by(induction c) (simp_all add: finite_avars finite_bvars)
class L =
fixes L :: "vname set \<Rightarrow> 'a set"
instantiation acom :: (L)L
begin
definition L_acom where
"L X = {C. vars(strip C) \<subseteq> X \<and> (\<forall>a \<in> set(annos C). a \<in> L X)}"
instance ..
end
instantiation option :: (L)L
begin
definition L_option where
"L X = {opt. case opt of None \<Rightarrow> True | Some x \<Rightarrow> x \<in> L X}"
lemma L_option_simps[simp]: "None \<in> L X" "(Some x \<in> L X) = (x \<in> L X)"
by(simp_all add: L_option_def)
instance ..
end
class semilatticeL = join + L +
fixes top :: "vname set \<Rightarrow> 'a"
assumes join_ge1 [simp]: "x \<in> L X \<Longrightarrow> y \<in> L X \<Longrightarrow> x \<sqsubseteq> x \<squnion> y"
and join_ge2 [simp]: "x \<in> L X \<Longrightarrow> y \<in> L X \<Longrightarrow> y \<sqsubseteq> x \<squnion> y"
and join_least[simp]: "x \<sqsubseteq> z \<Longrightarrow> y \<sqsubseteq> z \<Longrightarrow> x \<squnion> y \<sqsubseteq> z"
and top[simp]: "x \<in> L X \<Longrightarrow> x \<sqsubseteq> top X"
and top_in_L[simp]: "top X \<in> L X"
and join_in_L[simp]: "x \<in> L X \<Longrightarrow> y \<in> L X \<Longrightarrow> x \<squnion> y \<in> L X"
notation (input) top ("\<top>\<^bsub>_\<^esub>")
notation (latex output) top ("\<top>\<^bsub>\<^raw:\isa{>_\<^raw:}>\<^esub>")
instantiation option :: (semilatticeL)semilatticeL
begin
definition top_option where "top c = Some(top c)"
instance proof
case goal1 thus ?case by(cases x, simp, cases y, simp_all)
next
case goal2 thus ?case by(cases y, simp, cases x, simp_all)
next
case goal3 thus ?case by(cases z, simp, cases y, simp, cases x, simp_all)
next
case goal4 thus ?case by(cases x, simp_all add: top_option_def)
next
case goal5 thus ?case by(simp add: top_option_def)
next
case goal6 thus ?case by(simp add: L_option_def split: option.splits)
qed
end
subsection "Abstract State with Computable Ordering"
hide_type st --"to avoid long names"
text{* A concrete type of state with computable @{text"\<sqsubseteq>"}: *}
datatype 'a st = FunDom "vname \<Rightarrow> 'a" "vname set"
fun "fun" where "fun (FunDom f X) = f"
fun dom where "dom (FunDom f X) = X"
definition "show_st S = (\<lambda>x. (x, fun S x)) ` dom S"
value [code] "show_st (FunDom (\<lambda>x. 1::int) {''a'',''b''})"
definition "show_acom = map_acom (Option.map show_st)"
definition "show_acom_opt = Option.map show_acom"
definition "update F x y = FunDom ((fun F)(x:=y)) (dom F)"
lemma fun_update[simp]: "fun (update S x y) = (fun S)(x:=y)"
by(rule ext)(auto simp: update_def)
lemma dom_update[simp]: "dom (update S x y) = dom S"
by(simp add: update_def)
definition "\<gamma>_st \<gamma> F = {f. \<forall>x\<in>dom F. f x \<in> \<gamma>(fun F x)}"
instantiation st :: (preord) preord
begin
definition le_st :: "'a st \<Rightarrow> 'a st \<Rightarrow> bool" where
"F \<sqsubseteq> G = (dom F = dom G \<and> (\<forall>x \<in> dom F. fun F x \<sqsubseteq> fun G x))"
instance
proof
case goal2 thus ?case by(auto simp: le_st_def)(metis preord_class.le_trans)
qed (auto simp: le_st_def)
end
instantiation st :: (join) join
begin
definition join_st :: "'a st \<Rightarrow> 'a st \<Rightarrow> 'a st" where
"F \<squnion> G = FunDom (\<lambda>x. fun F x \<squnion> fun G x) (dom F)"
instance ..
end
instantiation st :: (type) L
begin
definition L_st :: "vname set \<Rightarrow> 'a st set" where
"L X = {F. dom F = X}"
instance ..
end
instantiation st :: (semilattice) semilatticeL
begin
definition top_st where "top X = FunDom (\<lambda>x. \<top>) X"
instance
proof
qed (auto simp: le_st_def join_st_def top_st_def L_st_def)
end
text{* Trick to make code generator happy. *}
lemma [code]: "L = (L :: _ \<Rightarrow> _ st set)"
by(rule refl)
(* L is not used in the code but is part of a type class that is used.
Hence the code generator wants to build a dictionary with L in it.
But L is not executable. This looping defn makes it look as if it were. *)
lemma mono_fun: "F \<sqsubseteq> G \<Longrightarrow> x : dom F \<Longrightarrow> fun F x \<sqsubseteq> fun G x"
by(auto simp: le_st_def)
lemma mono_update[simp]:
"a1 \<sqsubseteq> a2 \<Longrightarrow> S1 \<sqsubseteq> S2 \<Longrightarrow> update S1 x a1 \<sqsubseteq> update S2 x a2"
by(auto simp add: le_st_def update_def)
locale Gamma = Val_abs where \<gamma>=\<gamma> for \<gamma> :: "'av::semilattice \<Rightarrow> val set"
begin
abbreviation \<gamma>\<^isub>s :: "'av st \<Rightarrow> state set"
where "\<gamma>\<^isub>s == \<gamma>_st \<gamma>"
abbreviation \<gamma>\<^isub>o :: "'av st option \<Rightarrow> state set"
where "\<gamma>\<^isub>o == \<gamma>_option \<gamma>\<^isub>s"
abbreviation \<gamma>\<^isub>c :: "'av st option acom \<Rightarrow> state set acom"
where "\<gamma>\<^isub>c == map_acom \<gamma>\<^isub>o"
lemma gamma_s_Top[simp]: "\<gamma>\<^isub>s (top c) = UNIV"
by(auto simp: top_st_def \<gamma>_st_def)
lemma gamma_o_Top[simp]: "\<gamma>\<^isub>o (top c) = UNIV"
by (simp add: top_option_def)
lemma mono_gamma_s: "f \<sqsubseteq> g \<Longrightarrow> \<gamma>\<^isub>s f \<subseteq> \<gamma>\<^isub>s g"
apply(simp add:\<gamma>_st_def subset_iff le_st_def split: if_splits)
by (metis mono_gamma subsetD)
lemma mono_gamma_o:
"S1 \<sqsubseteq> S2 \<Longrightarrow> \<gamma>\<^isub>o S1 \<subseteq> \<gamma>\<^isub>o S2"
by(induction S1 S2 rule: le_option.induct)(simp_all add: mono_gamma_s)
lemma mono_gamma_c: "C1 \<sqsubseteq> C2 \<Longrightarrow> \<gamma>\<^isub>c C1 \<le> \<gamma>\<^isub>c C2"
by (induction C1 C2 rule: le_acom.induct) (simp_all add:mono_gamma_o)
lemma in_gamma_option_iff:
"x : \<gamma>_option r u \<longleftrightarrow> (\<exists>u'. u = Some u' \<and> x : r u')"
by (cases u) auto
end
end