two target language numeral types: integer and natural, as replacement for code_numeral;
former theory HOL/Library/Code_Numeral_Types replaces HOL/Code_Numeral;
refined stack of theories implementing int and/or nat by target language numerals;
reduced number of target language numeral types to exactly one
(* Title: HOL/Tools/Function/sum_tree.ML
Author: Alexander Krauss, TU Muenchen
Some common tools for working with sum types in balanced tree form.
*)
signature SUM_TREE =
sig
val sumcase_split_ss: simpset
val access_top_down: {init: 'a, left: 'a -> 'a, right: 'a -> 'a} -> int -> int -> 'a
val mk_sumT: typ -> typ -> typ
val mk_sumcase: typ -> typ -> typ -> term -> term -> term
val App: term -> term -> term
val mk_inj: typ -> int -> int -> term -> term
val mk_proj: typ -> int -> int -> term -> term
val mk_sumcases: typ -> term list -> term
end
structure SumTree: SUM_TREE =
struct
(* Theory dependencies *)
val sumcase_split_ss =
HOL_basic_ss addsimps (@{thm Product_Type.split} :: @{thms sum.cases})
(* top-down access in balanced tree *)
fun access_top_down {left, right, init} len i =
Balanced_Tree.access
{left = (fn f => f o left), right = (fn f => f o right), init = I} len i init
(* Sum types *)
fun mk_sumT LT RT = Type (@{type_name Sum_Type.sum}, [LT, RT])
fun mk_sumcase TL TR T l r =
Const (@{const_name sum.sum_case},
(TL --> T) --> (TR --> T) --> mk_sumT TL TR --> T) $ l $ r
val App = curry op $
fun mk_inj ST n i =
access_top_down
{ init = (ST, I : term -> term),
left = (fn (T as Type (@{type_name Sum_Type.sum}, [LT, RT]), inj) =>
(LT, inj o App (Const (@{const_name Inl}, LT --> T)))),
right =(fn (T as Type (@{type_name Sum_Type.sum}, [LT, RT]), inj) =>
(RT, inj o App (Const (@{const_name Inr}, RT --> T))))} n i
|> snd
fun mk_proj ST n i =
access_top_down
{ init = (ST, I : term -> term),
left = (fn (T as Type (@{type_name Sum_Type.sum}, [LT, RT]), proj) =>
(LT, App (Const (@{const_name Sum_Type.Projl}, T --> LT)) o proj)),
right =(fn (T as Type (@{type_name Sum_Type.sum}, [LT, RT]), proj) =>
(RT, App (Const (@{const_name Sum_Type.Projr}, T --> RT)) o proj))} n i
|> snd
fun mk_sumcases T fs =
Balanced_Tree.make (fn ((f, fT), (g, gT)) => (mk_sumcase fT gT T f g, mk_sumT fT gT))
(map (fn f => (f, domain_type (fastype_of f))) fs)
|> fst
end