Now sets loadpath.
(* Title: CCL/set.thy
ID: $Id$
Modified version of HOL/set.thy that extends FOL
*)
Set = FOL +
types
'a set
arities
set :: (term) term
consts
Collect :: "['a => o] => 'a set" (*comprehension*)
Compl :: "('a set) => 'a set" (*complement*)
Int :: "['a set, 'a set] => 'a set" (infixl 70)
Un :: "['a set, 'a set] => 'a set" (infixl 65)
Union, Inter :: "(('a set)set) => 'a set" (*...of a set*)
UNION, INTER :: "['a set, 'a => 'b set] => 'b set" (*general*)
Ball, Bex :: "['a set, 'a => o] => o" (*bounded quants*)
mono :: "['a set => 'b set] => o" (*monotonicity*)
":" :: "['a, 'a set] => o" (infixl 50) (*membership*)
"<=" :: "['a set, 'a set] => o" (infixl 50)
singleton :: "'a => 'a set" ("{_}")
empty :: "'a set" ("{}")
"oo" :: "['b => 'c, 'a => 'b, 'a] => 'c" (infixr 50) (*composition*)
"@Coll" :: "[idt, o] => 'a set" ("(1{_./ _})") (*collection*)
(* Big Intersection / Union *)
"@INTER" :: "[idt, 'a set, 'b set] => 'b set" ("(INT _:_./ _)" [0, 0, 0] 10)
"@UNION" :: "[idt, 'a set, 'b set] => 'b set" ("(UN _:_./ _)" [0, 0, 0] 10)
(* Bounded Quantifiers *)
"@Ball" :: "[idt, 'a set, o] => o" ("(ALL _:_./ _)" [0, 0, 0] 10)
"@Bex" :: "[idt, 'a set, o] => o" ("(EX _:_./ _)" [0, 0, 0] 10)
translations
"{x. P}" == "Collect(%x. P)"
"INT x:A. B" == "INTER(A, %x. B)"
"UN x:A. B" == "UNION(A, %x. B)"
"ALL x:A. P" == "Ball(A, %x. P)"
"EX x:A. P" == "Bex(A, %x. P)"
rules
mem_Collect_iff "(a : {x.P(x)}) <-> P(a)"
set_extension "A=B <-> (ALL x.x:A <-> x:B)"
Ball_def "Ball(A, P) == ALL x. x:A --> P(x)"
Bex_def "Bex(A, P) == EX x. x:A & P(x)"
mono_def "mono(f) == (ALL A B. A <= B --> f(A) <= f(B))"
subset_def "A <= B == ALL x:A. x:B"
singleton_def "{a} == {x.x=a}"
empty_def "{} == {x.False}"
Un_def "A Un B == {x.x:A | x:B}"
Int_def "A Int B == {x.x:A & x:B}"
Compl_def "Compl(A) == {x. ~x:A}"
INTER_def "INTER(A, B) == {y. ALL x:A. y: B(x)}"
UNION_def "UNION(A, B) == {y. EX x:A. y: B(x)}"
Inter_def "Inter(S) == (INT x:S. x)"
Union_def "Union(S) == (UN x:S. x)"
end