simplified pretty printing context, which is only required for certain kernel operations;
disentangled dependencies of structure Pretty;
(* Title: HOL/Number_Theory/UniqueFactorization.thy
Author: Jeremy Avigad
Unique factorization for the natural numbers and the integers.
Note: there were previous Isabelle formalizations of unique
factorization due to Thomas Marthedal Rasmussen, and, building on
that, by Jeremy Avigad and David Gray.
*)
header {* UniqueFactorization *}
theory UniqueFactorization
imports Cong "~~/src/HOL/Library/Multiset"
begin
(* inherited from Multiset *)
declare One_nat_def [simp del]
(* As a simp or intro rule,
prime p \<Longrightarrow> p > 0
wreaks havoc here. When the premise includes ALL x :# M. prime x, it
leads to the backchaining
x > 0
prime x
x :# M which is, unfortunately,
count M x > 0
*)
(* useful facts *)
lemma setsum_Un2: "finite (A Un B) \<Longrightarrow>
setsum f (A Un B) = setsum f (A - B) + setsum f (B - A) +
setsum f (A Int B)"
apply (subgoal_tac "A Un B = (A - B) Un (B - A) Un (A Int B)")
apply (erule ssubst)
apply (subst setsum_Un_disjoint)
apply auto
apply (subst setsum_Un_disjoint)
apply auto
done
lemma setprod_Un2: "finite (A Un B) \<Longrightarrow>
setprod f (A Un B) = setprod f (A - B) * setprod f (B - A) *
setprod f (A Int B)"
apply (subgoal_tac "A Un B = (A - B) Un (B - A) Un (A Int B)")
apply (erule ssubst)
apply (subst setprod_Un_disjoint)
apply auto
apply (subst setprod_Un_disjoint)
apply auto
done
(* Here is a version of set product for multisets. Is it worth moving
to multiset.thy? If so, one should similarly define msetsum for abelian
semirings, using of_nat. Also, is it worth developing bounded quantifiers
"ALL i :# M. P i"?
*)
definition msetprod :: "('a => ('b::{power,comm_monoid_mult})) => 'a multiset => 'b" where
"msetprod f M == setprod (%x. (f x)^(count M x)) (set_of M)"
syntax
"_msetprod" :: "pttrn => 'a set => 'b => 'b::comm_monoid_mult"
("(3PROD _:#_. _)" [0, 51, 10] 10)
translations
"PROD i :# A. b" == "CONST msetprod (%i. b) A"
lemma msetprod_empty:
"msetprod f {#} = 1"
by (simp add: msetprod_def)
lemma msetprod_singleton:
"msetprod f {#x#} = f x"
by (simp add: msetprod_def)
lemma msetprod_Un: "msetprod f (A+B) = msetprod f A * msetprod f B"
apply (simp add: msetprod_def power_add)
apply (subst setprod_Un2)
apply auto
apply (subgoal_tac
"(PROD x:set_of A - set_of B. f x ^ count A x * f x ^ count B x) =
(PROD x:set_of A - set_of B. f x ^ count A x)")
apply (erule ssubst)
apply (subgoal_tac
"(PROD x:set_of B - set_of A. f x ^ count A x * f x ^ count B x) =
(PROD x:set_of B - set_of A. f x ^ count B x)")
apply (erule ssubst)
apply (subgoal_tac "(PROD x:set_of A. f x ^ count A x) =
(PROD x:set_of A - set_of B. f x ^ count A x) *
(PROD x:set_of A Int set_of B. f x ^ count A x)")
apply (erule ssubst)
apply (subgoal_tac "(PROD x:set_of B. f x ^ count B x) =
(PROD x:set_of B - set_of A. f x ^ count B x) *
(PROD x:set_of A Int set_of B. f x ^ count B x)")
apply (erule ssubst)
apply (subst setprod_timesf)
apply (force simp add: mult_ac)
apply (subst setprod_Un_disjoint [symmetric])
apply (auto intro: setprod_cong)
apply (subst setprod_Un_disjoint [symmetric])
apply (auto intro: setprod_cong)
done
subsection {* unique factorization: multiset version *}
lemma multiset_prime_factorization_exists [rule_format]: "n > 0 -->
(EX M. (ALL (p::nat) : set_of M. prime p) & n = (PROD i :# M. i))"
proof (rule nat_less_induct, clarify)
fix n :: nat
assume ih: "ALL m < n. 0 < m --> (EX M. (ALL p : set_of M. prime p) & m =
(PROD i :# M. i))"
assume "(n::nat) > 0"
then have "n = 1 | (n > 1 & prime n) | (n > 1 & ~ prime n)"
by arith
moreover
{
assume "n = 1"
then have "(ALL p : set_of {#}. prime p) & n = (PROD i :# {#}. i)"
by (auto simp add: msetprod_def)
}
moreover
{
assume "n > 1" and "prime n"
then have "(ALL p : set_of {# n #}. prime p) & n = (PROD i :# {# n #}. i)"
by (auto simp add: msetprod_def)
}
moreover
{
assume "n > 1" and "~ prime n"
with not_prime_eq_prod_nat obtain m k where n: "n = m * k & 1 < m & m < n & 1 < k & k < n"
by blast
with ih obtain Q R where "(ALL p : set_of Q. prime p) & m = (PROD i:#Q. i)"
and "(ALL p: set_of R. prime p) & k = (PROD i:#R. i)"
by blast
hence "(ALL p: set_of (Q + R). prime p) & n = (PROD i :# Q + R. i)"
by (auto simp add: n msetprod_Un)
then have "EX M. (ALL p : set_of M. prime p) & n = (PROD i :# M. i)"..
}
ultimately show "EX M. (ALL p : set_of M. prime p) & n = (PROD i::nat:#M. i)"
by blast
qed
lemma multiset_prime_factorization_unique_aux:
fixes a :: nat
assumes "(ALL p : set_of M. prime p)" and
"(ALL p : set_of N. prime p)" and
"(PROD i :# M. i) dvd (PROD i:# N. i)"
shows
"count M a <= count N a"
proof cases
assume M: "a : set_of M"
with assms have a: "prime a" by auto
with M have "a ^ count M a dvd (PROD i :# M. i)"
by (auto intro: dvd_setprod simp add: msetprod_def)
also have "... dvd (PROD i :# N. i)" by (rule assms)
also have "... = (PROD i : (set_of N). i ^ (count N i))"
by (simp add: msetprod_def)
also have "... =
a^(count N a) * (PROD i : (set_of N - {a}). i ^ (count N i))"
proof (cases)
assume "a : set_of N"
hence b: "set_of N = {a} Un (set_of N - {a})"
by auto
thus ?thesis
by (subst (1) b, subst setprod_Un_disjoint, auto)
next
assume "a ~: set_of N"
thus ?thesis
by auto
qed
finally have "a ^ count M a dvd
a^(count N a) * (PROD i : (set_of N - {a}). i ^ (count N i))".
moreover have "coprime (a ^ count M a)
(PROD i : (set_of N - {a}). i ^ (count N i))"
apply (subst gcd_commute_nat)
apply (rule setprod_coprime_nat)
apply (rule primes_imp_powers_coprime_nat)
using assms M
apply auto
done
ultimately have "a ^ count M a dvd a^(count N a)"
by (elim coprime_dvd_mult_nat)
with a show ?thesis
by (intro power_dvd_imp_le, auto)
next
assume "a ~: set_of M"
thus ?thesis by auto
qed
lemma multiset_prime_factorization_unique:
assumes "(ALL (p::nat) : set_of M. prime p)" and
"(ALL p : set_of N. prime p)" and
"(PROD i :# M. i) = (PROD i:# N. i)"
shows
"M = N"
proof -
{
fix a
from assms have "count M a <= count N a"
by (intro multiset_prime_factorization_unique_aux, auto)
moreover from assms have "count N a <= count M a"
by (intro multiset_prime_factorization_unique_aux, auto)
ultimately have "count M a = count N a"
by auto
}
thus ?thesis by (simp add:multiset_eq_iff)
qed
definition multiset_prime_factorization :: "nat => nat multiset" where
"multiset_prime_factorization n ==
if n > 0 then (THE M. ((ALL p : set_of M. prime p) &
n = (PROD i :# M. i)))
else {#}"
lemma multiset_prime_factorization: "n > 0 ==>
(ALL p : set_of (multiset_prime_factorization n). prime p) &
n = (PROD i :# (multiset_prime_factorization n). i)"
apply (unfold multiset_prime_factorization_def)
apply clarsimp
apply (frule multiset_prime_factorization_exists)
apply clarify
apply (rule theI)
apply (insert multiset_prime_factorization_unique, blast)+
done
subsection {* Prime factors and multiplicity for nats and ints *}
class unique_factorization =
fixes
multiplicity :: "'a \<Rightarrow> 'a \<Rightarrow> nat" and
prime_factors :: "'a \<Rightarrow> 'a set"
(* definitions for the natural numbers *)
instantiation nat :: unique_factorization
begin
definition
multiplicity_nat :: "nat \<Rightarrow> nat \<Rightarrow> nat"
where
"multiplicity_nat p n = count (multiset_prime_factorization n) p"
definition
prime_factors_nat :: "nat \<Rightarrow> nat set"
where
"prime_factors_nat n = set_of (multiset_prime_factorization n)"
instance proof qed
end
(* definitions for the integers *)
instantiation int :: unique_factorization
begin
definition
multiplicity_int :: "int \<Rightarrow> int \<Rightarrow> nat"
where
"multiplicity_int p n = multiplicity (nat p) (nat n)"
definition
prime_factors_int :: "int \<Rightarrow> int set"
where
"prime_factors_int n = int ` (prime_factors (nat n))"
instance proof qed
end
subsection {* Set up transfer *}
lemma transfer_nat_int_prime_factors:
"prime_factors (nat n) = nat ` prime_factors n"
unfolding prime_factors_int_def apply auto
by (subst transfer_int_nat_set_return_embed, assumption)
lemma transfer_nat_int_prime_factors_closure: "n >= 0 \<Longrightarrow>
nat_set (prime_factors n)"
by (auto simp add: nat_set_def prime_factors_int_def)
lemma transfer_nat_int_multiplicity: "p >= 0 \<Longrightarrow> n >= 0 \<Longrightarrow>
multiplicity (nat p) (nat n) = multiplicity p n"
by (auto simp add: multiplicity_int_def)
declare transfer_morphism_nat_int[transfer add return:
transfer_nat_int_prime_factors transfer_nat_int_prime_factors_closure
transfer_nat_int_multiplicity]
lemma transfer_int_nat_prime_factors:
"prime_factors (int n) = int ` prime_factors n"
unfolding prime_factors_int_def by auto
lemma transfer_int_nat_prime_factors_closure: "is_nat n \<Longrightarrow>
nat_set (prime_factors n)"
by (simp only: transfer_nat_int_prime_factors_closure is_nat_def)
lemma transfer_int_nat_multiplicity:
"multiplicity (int p) (int n) = multiplicity p n"
by (auto simp add: multiplicity_int_def)
declare transfer_morphism_int_nat[transfer add return:
transfer_int_nat_prime_factors transfer_int_nat_prime_factors_closure
transfer_int_nat_multiplicity]
subsection {* Properties of prime factors and multiplicity for nats and ints *}
lemma prime_factors_ge_0_int [elim]: "p : prime_factors (n::int) \<Longrightarrow> p >= 0"
by (unfold prime_factors_int_def, auto)
lemma prime_factors_prime_nat [intro]: "p : prime_factors (n::nat) \<Longrightarrow> prime p"
apply (case_tac "n = 0")
apply (simp add: prime_factors_nat_def multiset_prime_factorization_def)
apply (auto simp add: prime_factors_nat_def multiset_prime_factorization)
done
lemma prime_factors_prime_int [intro]:
assumes "n >= 0" and "p : prime_factors (n::int)"
shows "prime p"
apply (rule prime_factors_prime_nat [transferred, of n p])
using assms apply auto
done
lemma prime_factors_gt_0_nat [elim]: "p : prime_factors x \<Longrightarrow> p > (0::nat)"
by (frule prime_factors_prime_nat, auto)
lemma prime_factors_gt_0_int [elim]: "x >= 0 \<Longrightarrow> p : prime_factors x \<Longrightarrow>
p > (0::int)"
by (frule (1) prime_factors_prime_int, auto)
lemma prime_factors_finite_nat [iff]: "finite (prime_factors (n::nat))"
by (unfold prime_factors_nat_def, auto)
lemma prime_factors_finite_int [iff]: "finite (prime_factors (n::int))"
by (unfold prime_factors_int_def, auto)
lemma prime_factors_altdef_nat: "prime_factors (n::nat) =
{p. multiplicity p n > 0}"
by (force simp add: prime_factors_nat_def multiplicity_nat_def)
lemma prime_factors_altdef_int: "prime_factors (n::int) =
{p. p >= 0 & multiplicity p n > 0}"
apply (unfold prime_factors_int_def multiplicity_int_def)
apply (subst prime_factors_altdef_nat)
apply (auto simp add: image_def)
done
lemma prime_factorization_nat: "(n::nat) > 0 \<Longrightarrow>
n = (PROD p : prime_factors n. p^(multiplicity p n))"
by (frule multiset_prime_factorization,
simp add: prime_factors_nat_def multiplicity_nat_def msetprod_def)
lemma prime_factorization_int:
assumes "(n::int) > 0"
shows "n = (PROD p : prime_factors n. p^(multiplicity p n))"
apply (rule prime_factorization_nat [transferred, of n])
using assms apply auto
done
lemma neq_zero_eq_gt_zero_nat: "((x::nat) ~= 0) = (x > 0)"
by auto
lemma prime_factorization_unique_nat:
"S = { (p::nat) . f p > 0} \<Longrightarrow> finite S \<Longrightarrow> (ALL p : S. prime p) \<Longrightarrow>
n = (PROD p : S. p^(f p)) \<Longrightarrow>
S = prime_factors n & (ALL p. f p = multiplicity p n)"
apply (subgoal_tac "multiset_prime_factorization n = Abs_multiset
f")
apply (unfold prime_factors_nat_def multiplicity_nat_def)
apply (simp add: set_of_def Abs_multiset_inverse multiset_def)
apply (unfold multiset_prime_factorization_def)
apply (subgoal_tac "n > 0")
prefer 2
apply force
apply (subst if_P, assumption)
apply (rule the1_equality)
apply (rule ex_ex1I)
apply (rule multiset_prime_factorization_exists, assumption)
apply (rule multiset_prime_factorization_unique)
apply force
apply force
apply force
unfolding set_of_def msetprod_def
apply (subgoal_tac "f : multiset")
apply (auto simp only: Abs_multiset_inverse)
unfolding multiset_def apply force
done
lemma prime_factors_characterization_nat: "S = {p. 0 < f (p::nat)} \<Longrightarrow>
finite S \<Longrightarrow> (ALL p:S. prime p) \<Longrightarrow> n = (PROD p:S. p ^ f p) \<Longrightarrow>
prime_factors n = S"
by (rule prime_factorization_unique_nat [THEN conjunct1, symmetric],
assumption+)
lemma prime_factors_characterization'_nat:
"finite {p. 0 < f (p::nat)} \<Longrightarrow>
(ALL p. 0 < f p \<longrightarrow> prime p) \<Longrightarrow>
prime_factors (PROD p | 0 < f p . p ^ f p) = {p. 0 < f p}"
apply (rule prime_factors_characterization_nat)
apply auto
done
(* A minor glitch:*)
thm prime_factors_characterization'_nat
[where f = "%x. f (int (x::nat))",
transferred direction: nat "op <= (0::int)", rule_format]
(*
Transfer isn't smart enough to know that the "0 < f p" should
remain a comparison between nats. But the transfer still works.
*)
lemma primes_characterization'_int [rule_format]:
"finite {p. p >= 0 & 0 < f (p::int)} \<Longrightarrow>
(ALL p. 0 < f p \<longrightarrow> prime p) \<Longrightarrow>
prime_factors (PROD p | p >=0 & 0 < f p . p ^ f p) =
{p. p >= 0 & 0 < f p}"
apply (insert prime_factors_characterization'_nat
[where f = "%x. f (int (x::nat))",
transferred direction: nat "op <= (0::int)"])
apply auto
done
lemma prime_factors_characterization_int: "S = {p. 0 < f (p::int)} \<Longrightarrow>
finite S \<Longrightarrow> (ALL p:S. prime p) \<Longrightarrow> n = (PROD p:S. p ^ f p) \<Longrightarrow>
prime_factors n = S"
apply simp
apply (subgoal_tac "{p. 0 < f p} = {p. 0 <= p & 0 < f p}")
apply (simp only:)
apply (subst primes_characterization'_int)
apply auto
apply (auto simp add: prime_ge_0_int)
done
lemma multiplicity_characterization_nat: "S = {p. 0 < f (p::nat)} \<Longrightarrow>
finite S \<Longrightarrow> (ALL p:S. prime p) \<Longrightarrow> n = (PROD p:S. p ^ f p) \<Longrightarrow>
multiplicity p n = f p"
by (frule prime_factorization_unique_nat [THEN conjunct2, rule_format,
symmetric], auto)
lemma multiplicity_characterization'_nat: "finite {p. 0 < f (p::nat)} \<longrightarrow>
(ALL p. 0 < f p \<longrightarrow> prime p) \<longrightarrow>
multiplicity p (PROD p | 0 < f p . p ^ f p) = f p"
apply (rule impI)+
apply (rule multiplicity_characterization_nat)
apply auto
done
lemma multiplicity_characterization'_int [rule_format]:
"finite {p. p >= 0 & 0 < f (p::int)} \<Longrightarrow>
(ALL p. 0 < f p \<longrightarrow> prime p) \<Longrightarrow> p >= 0 \<Longrightarrow>
multiplicity p (PROD p | p >= 0 & 0 < f p . p ^ f p) = f p"
apply (insert multiplicity_characterization'_nat
[where f = "%x. f (int (x::nat))",
transferred direction: nat "op <= (0::int)", rule_format])
apply auto
done
lemma multiplicity_characterization_int: "S = {p. 0 < f (p::int)} \<Longrightarrow>
finite S \<Longrightarrow> (ALL p:S. prime p) \<Longrightarrow> n = (PROD p:S. p ^ f p) \<Longrightarrow>
p >= 0 \<Longrightarrow> multiplicity p n = f p"
apply simp
apply (subgoal_tac "{p. 0 < f p} = {p. 0 <= p & 0 < f p}")
apply (simp only:)
apply (subst multiplicity_characterization'_int)
apply auto
apply (auto simp add: prime_ge_0_int)
done
lemma multiplicity_zero_nat [simp]: "multiplicity (p::nat) 0 = 0"
by (simp add: multiplicity_nat_def multiset_prime_factorization_def)
lemma multiplicity_zero_int [simp]: "multiplicity (p::int) 0 = 0"
by (simp add: multiplicity_int_def)
lemma multiplicity_one_nat [simp]: "multiplicity p (1::nat) = 0"
by (subst multiplicity_characterization_nat [where f = "%x. 0"], auto)
lemma multiplicity_one_int [simp]: "multiplicity p (1::int) = 0"
by (simp add: multiplicity_int_def)
lemma multiplicity_prime_nat [simp]: "prime (p::nat) \<Longrightarrow> multiplicity p p = 1"
apply (subst multiplicity_characterization_nat
[where f = "(%q. if q = p then 1 else 0)"])
apply auto
apply (case_tac "x = p")
apply auto
done
lemma multiplicity_prime_int [simp]: "prime (p::int) \<Longrightarrow> multiplicity p p = 1"
unfolding prime_int_def multiplicity_int_def by auto
lemma multiplicity_prime_power_nat [simp]: "prime (p::nat) \<Longrightarrow>
multiplicity p (p^n) = n"
apply (case_tac "n = 0")
apply auto
apply (subst multiplicity_characterization_nat
[where f = "(%q. if q = p then n else 0)"])
apply auto
apply (case_tac "x = p")
apply auto
done
lemma multiplicity_prime_power_int [simp]: "prime (p::int) \<Longrightarrow>
multiplicity p (p^n) = n"
apply (frule prime_ge_0_int)
apply (auto simp add: prime_int_def multiplicity_int_def nat_power_eq)
done
lemma multiplicity_nonprime_nat [simp]: "~ prime (p::nat) \<Longrightarrow>
multiplicity p n = 0"
apply (case_tac "n = 0")
apply auto
apply (frule multiset_prime_factorization)
apply (auto simp add: set_of_def multiplicity_nat_def)
done
lemma multiplicity_nonprime_int [simp]: "~ prime (p::int) \<Longrightarrow> multiplicity p n = 0"
by (unfold multiplicity_int_def prime_int_def, auto)
lemma multiplicity_not_factor_nat [simp]:
"p ~: prime_factors (n::nat) \<Longrightarrow> multiplicity p n = 0"
by (subst (asm) prime_factors_altdef_nat, auto)
lemma multiplicity_not_factor_int [simp]:
"p >= 0 \<Longrightarrow> p ~: prime_factors (n::int) \<Longrightarrow> multiplicity p n = 0"
by (subst (asm) prime_factors_altdef_int, auto)
lemma multiplicity_product_aux_nat: "(k::nat) > 0 \<Longrightarrow> l > 0 \<Longrightarrow>
(prime_factors k) Un (prime_factors l) = prime_factors (k * l) &
(ALL p. multiplicity p k + multiplicity p l = multiplicity p (k * l))"
apply (rule prime_factorization_unique_nat)
apply (simp only: prime_factors_altdef_nat)
apply auto
apply (subst power_add)
apply (subst setprod_timesf)
apply (rule arg_cong2)back back
apply (subgoal_tac "prime_factors k Un prime_factors l = prime_factors k Un
(prime_factors l - prime_factors k)")
apply (erule ssubst)
apply (subst setprod_Un_disjoint)
apply auto
apply (subgoal_tac "(\<Prod>p\<in>prime_factors l - prime_factors k. p ^ multiplicity p k) =
(\<Prod>p\<in>prime_factors l - prime_factors k. 1)")
apply (erule ssubst)
apply (simp add: setprod_1)
apply (erule prime_factorization_nat)
apply (rule setprod_cong, auto)
apply (subgoal_tac "prime_factors k Un prime_factors l = prime_factors l Un
(prime_factors k - prime_factors l)")
apply (erule ssubst)
apply (subst setprod_Un_disjoint)
apply auto
apply (subgoal_tac "(\<Prod>p\<in>prime_factors k - prime_factors l. p ^ multiplicity p l) =
(\<Prod>p\<in>prime_factors k - prime_factors l. 1)")
apply (erule ssubst)
apply (simp add: setprod_1)
apply (erule prime_factorization_nat)
apply (rule setprod_cong, auto)
done
(* transfer doesn't have the same problem here with the right
choice of rules. *)
lemma multiplicity_product_aux_int:
assumes "(k::int) > 0" and "l > 0"
shows
"(prime_factors k) Un (prime_factors l) = prime_factors (k * l) &
(ALL p >= 0. multiplicity p k + multiplicity p l = multiplicity p (k * l))"
apply (rule multiplicity_product_aux_nat [transferred, of l k])
using assms apply auto
done
lemma prime_factors_product_nat: "(k::nat) > 0 \<Longrightarrow> l > 0 \<Longrightarrow> prime_factors (k * l) =
prime_factors k Un prime_factors l"
by (rule multiplicity_product_aux_nat [THEN conjunct1, symmetric])
lemma prime_factors_product_int: "(k::int) > 0 \<Longrightarrow> l > 0 \<Longrightarrow> prime_factors (k * l) =
prime_factors k Un prime_factors l"
by (rule multiplicity_product_aux_int [THEN conjunct1, symmetric])
lemma multiplicity_product_nat: "(k::nat) > 0 \<Longrightarrow> l > 0 \<Longrightarrow> multiplicity p (k * l) =
multiplicity p k + multiplicity p l"
by (rule multiplicity_product_aux_nat [THEN conjunct2, rule_format,
symmetric])
lemma multiplicity_product_int: "(k::int) > 0 \<Longrightarrow> l > 0 \<Longrightarrow> p >= 0 \<Longrightarrow>
multiplicity p (k * l) = multiplicity p k + multiplicity p l"
by (rule multiplicity_product_aux_int [THEN conjunct2, rule_format,
symmetric])
lemma multiplicity_setprod_nat: "finite S \<Longrightarrow> (ALL x : S. f x > 0) \<Longrightarrow>
multiplicity (p::nat) (PROD x : S. f x) =
(SUM x : S. multiplicity p (f x))"
apply (induct set: finite)
apply auto
apply (subst multiplicity_product_nat)
apply auto
done
(* Transfer is delicate here for two reasons: first, because there is
an implicit quantifier over functions (f), and, second, because the
product over the multiplicity should not be translated to an integer
product.
The way to handle the first is to use quantifier rules for functions.
The way to handle the second is to turn off the offending rule.
*)
lemma transfer_nat_int_sum_prod_closure3:
"(SUM x : A. int (f x)) >= 0"
"(PROD x : A. int (f x)) >= 0"
apply (rule setsum_nonneg, auto)
apply (rule setprod_nonneg, auto)
done
declare transfer_morphism_nat_int[transfer
add return: transfer_nat_int_sum_prod_closure3
del: transfer_nat_int_sum_prod2 (1)]
lemma multiplicity_setprod_int: "p >= 0 \<Longrightarrow> finite S \<Longrightarrow>
(ALL x : S. f x > 0) \<Longrightarrow>
multiplicity (p::int) (PROD x : S. f x) =
(SUM x : S. multiplicity p (f x))"
apply (frule multiplicity_setprod_nat
[where f = "%x. nat(int(nat(f x)))",
transferred direction: nat "op <= (0::int)"])
apply auto
apply (subst (asm) setprod_cong)
apply (rule refl)
apply (rule if_P)
apply auto
apply (rule setsum_cong)
apply auto
done
declare transfer_morphism_nat_int[transfer
add return: transfer_nat_int_sum_prod2 (1)]
lemma multiplicity_prod_prime_powers_nat:
"finite S \<Longrightarrow> (ALL p : S. prime (p::nat)) \<Longrightarrow>
multiplicity p (PROD p : S. p ^ f p) = (if p : S then f p else 0)"
apply (subgoal_tac "(PROD p : S. p ^ f p) =
(PROD p : S. p ^ (%x. if x : S then f x else 0) p)")
apply (erule ssubst)
apply (subst multiplicity_characterization_nat)
prefer 5 apply (rule refl)
apply (rule refl)
apply auto
apply (subst setprod_mono_one_right)
apply assumption
prefer 3
apply (rule setprod_cong)
apply (rule refl)
apply auto
done
(* Here the issue with transfer is the implicit quantifier over S *)
lemma multiplicity_prod_prime_powers_int:
"(p::int) >= 0 \<Longrightarrow> finite S \<Longrightarrow> (ALL p : S. prime p) \<Longrightarrow>
multiplicity p (PROD p : S. p ^ f p) = (if p : S then f p else 0)"
apply (subgoal_tac "int ` nat ` S = S")
apply (frule multiplicity_prod_prime_powers_nat [where f = "%x. f(int x)"
and S = "nat ` S", transferred])
apply auto
apply (metis prime_int_def)
apply (metis prime_ge_0_int)
apply (metis nat_set_def prime_ge_0_int transfer_nat_int_set_return_embed)
done
lemma multiplicity_distinct_prime_power_nat: "prime (p::nat) \<Longrightarrow> prime q \<Longrightarrow>
p ~= q \<Longrightarrow> multiplicity p (q^n) = 0"
apply (subgoal_tac "q^n = setprod (%x. x^n) {q}")
apply (erule ssubst)
apply (subst multiplicity_prod_prime_powers_nat)
apply auto
done
lemma multiplicity_distinct_prime_power_int: "prime (p::int) \<Longrightarrow> prime q \<Longrightarrow>
p ~= q \<Longrightarrow> multiplicity p (q^n) = 0"
apply (frule prime_ge_0_int [of q])
apply (frule multiplicity_distinct_prime_power_nat [transferred leaving: n])
prefer 4
apply assumption
apply auto
done
lemma dvd_multiplicity_nat:
"(0::nat) < y \<Longrightarrow> x dvd y \<Longrightarrow> multiplicity p x <= multiplicity p y"
apply (case_tac "x = 0")
apply (auto simp add: dvd_def multiplicity_product_nat)
done
lemma dvd_multiplicity_int:
"(0::int) < y \<Longrightarrow> 0 <= x \<Longrightarrow> x dvd y \<Longrightarrow> p >= 0 \<Longrightarrow>
multiplicity p x <= multiplicity p y"
apply (case_tac "x = 0")
apply (auto simp add: dvd_def)
apply (subgoal_tac "0 < k")
apply (auto simp add: multiplicity_product_int)
apply (erule zero_less_mult_pos)
apply arith
done
lemma dvd_prime_factors_nat [intro]:
"0 < (y::nat) \<Longrightarrow> x dvd y \<Longrightarrow> prime_factors x <= prime_factors y"
apply (simp only: prime_factors_altdef_nat)
apply auto
apply (metis dvd_multiplicity_nat le_0_eq neq_zero_eq_gt_zero_nat)
done
lemma dvd_prime_factors_int [intro]:
"0 < (y::int) \<Longrightarrow> 0 <= x \<Longrightarrow> x dvd y \<Longrightarrow> prime_factors x <= prime_factors y"
apply (auto simp add: prime_factors_altdef_int)
apply (metis dvd_multiplicity_int le_0_eq neq_zero_eq_gt_zero_nat)
done
lemma multiplicity_dvd_nat: "0 < (x::nat) \<Longrightarrow> 0 < y \<Longrightarrow>
ALL p. multiplicity p x <= multiplicity p y \<Longrightarrow>
x dvd y"
apply (subst prime_factorization_nat [of x], assumption)
apply (subst prime_factorization_nat [of y], assumption)
apply (rule setprod_dvd_setprod_subset2)
apply force
apply (subst prime_factors_altdef_nat)+
apply auto
apply (metis gr0I le_0_eq less_not_refl)
apply (metis le_imp_power_dvd)
done
lemma multiplicity_dvd_int: "0 < (x::int) \<Longrightarrow> 0 < y \<Longrightarrow>
ALL p >= 0. multiplicity p x <= multiplicity p y \<Longrightarrow>
x dvd y"
apply (subst prime_factorization_int [of x], assumption)
apply (subst prime_factorization_int [of y], assumption)
apply (rule setprod_dvd_setprod_subset2)
apply force
apply (subst prime_factors_altdef_int)+
apply auto
apply (metis le_imp_power_dvd prime_factors_ge_0_int)
done
lemma multiplicity_dvd'_nat: "(0::nat) < x \<Longrightarrow>
\<forall>p. prime p \<longrightarrow> multiplicity p x \<le> multiplicity p y \<Longrightarrow> x dvd y"
by (metis gcd_lcm_complete_lattice_nat.top_greatest le_refl multiplicity_dvd_nat
multiplicity_nonprime_nat neq0_conv)
lemma multiplicity_dvd'_int: "(0::int) < x \<Longrightarrow> 0 <= y \<Longrightarrow>
\<forall>p. prime p \<longrightarrow> multiplicity p x \<le> multiplicity p y \<Longrightarrow> x dvd y"
by (metis eq_imp_le gcd_lcm_complete_lattice_nat.top_greatest int_eq_0_conv multiplicity_dvd_int
multiplicity_nonprime_int nat_int transfer_nat_int_relations(4) zless_le)
lemma dvd_multiplicity_eq_nat: "0 < (x::nat) \<Longrightarrow> 0 < y \<Longrightarrow>
(x dvd y) = (ALL p. multiplicity p x <= multiplicity p y)"
by (auto intro: dvd_multiplicity_nat multiplicity_dvd_nat)
lemma dvd_multiplicity_eq_int: "0 < (x::int) \<Longrightarrow> 0 < y \<Longrightarrow>
(x dvd y) = (ALL p >= 0. multiplicity p x <= multiplicity p y)"
by (auto intro: dvd_multiplicity_int multiplicity_dvd_int)
lemma prime_factors_altdef2_nat: "(n::nat) > 0 \<Longrightarrow>
(p : prime_factors n) = (prime p & p dvd n)"
apply (case_tac "prime p")
apply auto
apply (subst prime_factorization_nat [where n = n], assumption)
apply (rule dvd_trans)
apply (rule dvd_power [where x = p and n = "multiplicity p n"])
apply (subst (asm) prime_factors_altdef_nat, force)
apply (rule dvd_setprod)
apply auto
apply (metis One_nat_def Zero_not_Suc dvd_multiplicity_nat le0 le_antisym multiplicity_not_factor_nat multiplicity_prime_nat)
done
lemma prime_factors_altdef2_int:
assumes "(n::int) > 0"
shows "(p : prime_factors n) = (prime p & p dvd n)"
apply (case_tac "p >= 0")
apply (rule prime_factors_altdef2_nat [transferred])
using assms apply auto
apply (auto simp add: prime_ge_0_int prime_factors_ge_0_int)
done
lemma multiplicity_eq_nat:
fixes x and y::nat
assumes [arith]: "x > 0" "y > 0" and
mult_eq [simp]: "!!p. prime p \<Longrightarrow> multiplicity p x = multiplicity p y"
shows "x = y"
apply (rule dvd_antisym)
apply (auto intro: multiplicity_dvd'_nat)
done
lemma multiplicity_eq_int:
fixes x and y::int
assumes [arith]: "x > 0" "y > 0" and
mult_eq [simp]: "!!p. prime p \<Longrightarrow> multiplicity p x = multiplicity p y"
shows "x = y"
apply (rule dvd_antisym [transferred])
apply (auto intro: multiplicity_dvd'_int)
done
subsection {* An application *}
lemma gcd_eq_nat:
assumes pos [arith]: "x > 0" "y > 0"
shows "gcd (x::nat) y =
(PROD p: prime_factors x Un prime_factors y.
p ^ (min (multiplicity p x) (multiplicity p y)))"
proof -
def z == "(PROD p: prime_factors (x::nat) Un prime_factors y.
p ^ (min (multiplicity p x) (multiplicity p y)))"
have [arith]: "z > 0"
unfolding z_def by (rule setprod_pos_nat, auto)
have aux: "!!p. prime p \<Longrightarrow> multiplicity p z =
min (multiplicity p x) (multiplicity p y)"
unfolding z_def
apply (subst multiplicity_prod_prime_powers_nat)
apply auto
done
have "z dvd x"
by (intro multiplicity_dvd'_nat, auto simp add: aux)
moreover have "z dvd y"
by (intro multiplicity_dvd'_nat, auto simp add: aux)
moreover have "ALL w. w dvd x & w dvd y \<longrightarrow> w dvd z"
apply auto
apply (case_tac "w = 0", auto)
apply (erule multiplicity_dvd'_nat)
apply (auto intro: dvd_multiplicity_nat simp add: aux)
done
ultimately have "z = gcd x y"
by (subst gcd_unique_nat [symmetric], blast)
thus ?thesis
unfolding z_def by auto
qed
lemma lcm_eq_nat:
assumes pos [arith]: "x > 0" "y > 0"
shows "lcm (x::nat) y =
(PROD p: prime_factors x Un prime_factors y.
p ^ (max (multiplicity p x) (multiplicity p y)))"
proof -
def z == "(PROD p: prime_factors (x::nat) Un prime_factors y.
p ^ (max (multiplicity p x) (multiplicity p y)))"
have [arith]: "z > 0"
unfolding z_def by (rule setprod_pos_nat, auto)
have aux: "!!p. prime p \<Longrightarrow> multiplicity p z =
max (multiplicity p x) (multiplicity p y)"
unfolding z_def
apply (subst multiplicity_prod_prime_powers_nat)
apply auto
done
have "x dvd z"
by (intro multiplicity_dvd'_nat, auto simp add: aux)
moreover have "y dvd z"
by (intro multiplicity_dvd'_nat, auto simp add: aux)
moreover have "ALL w. x dvd w & y dvd w \<longrightarrow> z dvd w"
apply auto
apply (case_tac "w = 0", auto)
apply (rule multiplicity_dvd'_nat)
apply (auto intro: dvd_multiplicity_nat simp add: aux)
done
ultimately have "z = lcm x y"
by (subst lcm_unique_nat [symmetric], blast)
thus ?thesis
unfolding z_def by auto
qed
lemma multiplicity_gcd_nat:
assumes [arith]: "x > 0" "y > 0"
shows "multiplicity (p::nat) (gcd x y) =
min (multiplicity p x) (multiplicity p y)"
apply (subst gcd_eq_nat)
apply auto
apply (subst multiplicity_prod_prime_powers_nat)
apply auto
done
lemma multiplicity_lcm_nat:
assumes [arith]: "x > 0" "y > 0"
shows "multiplicity (p::nat) (lcm x y) =
max (multiplicity p x) (multiplicity p y)"
apply (subst lcm_eq_nat)
apply auto
apply (subst multiplicity_prod_prime_powers_nat)
apply auto
done
lemma gcd_lcm_distrib_nat: "gcd (x::nat) (lcm y z) = lcm (gcd x y) (gcd x z)"
apply (case_tac "x = 0 | y = 0 | z = 0")
apply auto
apply (rule multiplicity_eq_nat)
apply (auto simp add: multiplicity_gcd_nat multiplicity_lcm_nat
lcm_pos_nat)
done
lemma gcd_lcm_distrib_int: "gcd (x::int) (lcm y z) = lcm (gcd x y) (gcd x z)"
apply (subst (1 2 3) gcd_abs_int)
apply (subst lcm_abs_int)
apply (subst (2) abs_of_nonneg)
apply force
apply (rule gcd_lcm_distrib_nat [transferred])
apply auto
done
end