src/HOL/Subst/UTerm.thy
author wenzelm
Mon, 18 Apr 2011 11:13:29 +0200
changeset 42383 0ae4ad40d7b5
parent 38140 05691ad74079
permissions -rw-r--r--
simplified pretty printing context, which is only required for certain kernel operations; disentangled dependencies of structure Pretty;

(*  Title:      HOL/Subst/UTerm.thy
    Author:     Martin Coen, Cambridge University Computer Laboratory
    Copyright   1993  University of Cambridge
*)

header {* Simple Term Structure for Unification *}

theory UTerm
imports Main
begin

text {* Binary trees with leaves that are constants or variables. *}

datatype 'a uterm =
    Var 'a
  | Const 'a
  | Comb "'a uterm" "'a uterm"

primrec vars_of :: "'a uterm => 'a set"
where
  vars_of_Var:   "vars_of (Var v) = {v}"
| vars_of_Const: "vars_of (Const c) = {}"
| vars_of_Comb:  "vars_of (Comb M N) = (vars_of(M) Un vars_of(N))"

primrec occs :: "'a uterm => 'a uterm => bool"   (infixl "<:" 54) 
where
  occs_Var: "u <: (Var v) = False"
| occs_Const: "u <: (Const c) = False"
| occs_Comb: "u <: (Comb M N) = (u = M | u = N | u <: M | u <: N)"

notation (xsymbols)
  occs  (infixl "\<prec>" 54)

primrec uterm_size ::  "'a uterm => nat"
where
  uterm_size_Var: "uterm_size (Var v) = 0"
| uterm_size_Const: "uterm_size (Const c) = 0"
| uterm_size_Comb: "uterm_size (Comb M N) = Suc(uterm_size M + uterm_size N)"


lemma vars_var_iff: "(v \<in> vars_of (Var w)) = (w = v)"
  by auto

lemma vars_iff_occseq: "(x \<in> vars_of t) = (Var x \<prec> t | Var x = t)"
  by (induct t) auto


text{* Not used, but perhaps useful in other proofs *}
lemma occs_vars_subset: "M \<prec> N \<Longrightarrow> vars_of M \<subseteq> vars_of N"
  by (induct N) auto


lemma monotone_vars_of:
    "vars_of M Un vars_of N \<subseteq> (vars_of M Un A) Un (vars_of N Un B)"
  by blast

lemma finite_vars_of: "finite (vars_of M)"
  by (induct M) auto

end