author | lcp |
Mon, 22 Aug 1994 11:11:17 +0200 | |
changeset 571 | 0b03ce5b62f7 |
parent 522 | e1de521e012a |
child 760 | f0200e91b272 |
permissions | -rw-r--r-- |
(* Title: ZF/Cardinal.ML ID: $Id$ Author: Lawrence C Paulson, Cambridge University Computer Laboratory Copyright 1994 University of Cambridge Cardinals in Zermelo-Fraenkel Set Theory This theory does NOT assume the Axiom of Choice *) open Cardinal; (*** The Schroeder-Bernstein Theorem -- see Davey & Priestly, page 106 ***) (** Lemma: Banach's Decomposition Theorem **) goal Cardinal.thy "bnd_mono(X, %W. X - g``(Y - f``W))"; by (rtac bnd_monoI 1); by (REPEAT (ares_tac [Diff_subset, subset_refl, Diff_mono, image_mono] 1)); val decomp_bnd_mono = result(); val [gfun] = goal Cardinal.thy "g: Y->X ==> \ \ g``(Y - f`` lfp(X, %W. X - g``(Y - f``W))) = \ \ X - lfp(X, %W. X - g``(Y - f``W)) "; by (res_inst_tac [("P", "%u. ?v = X-u")] (decomp_bnd_mono RS lfp_Tarski RS ssubst) 1); by (simp_tac (ZF_ss addsimps [subset_refl, double_complement, gfun RS fun_is_rel RS image_subset]) 1); val Banach_last_equation = result(); val prems = goal Cardinal.thy "[| f: X->Y; g: Y->X |] ==> \ \ EX XA XB YA YB. (XA Int XB = 0) & (XA Un XB = X) & \ \ (YA Int YB = 0) & (YA Un YB = Y) & \ \ f``XA=YA & g``YB=XB"; by (REPEAT (FIRSTGOAL (resolve_tac [refl, exI, conjI, Diff_disjoint, Diff_partition]))); by (rtac Banach_last_equation 3); by (REPEAT (resolve_tac (prems@[fun_is_rel, image_subset, lfp_subset]) 1)); val decomposition = result(); val prems = goal Cardinal.thy "[| f: inj(X,Y); g: inj(Y,X) |] ==> EX h. h: bij(X,Y)"; by (cut_facts_tac prems 1); by (cut_facts_tac [(prems RL [inj_is_fun]) MRS decomposition] 1); by (fast_tac (ZF_cs addSIs [restrict_bij,bij_disjoint_Un] addIs [bij_converse_bij]) 1); (* The instantiation of exI to "restrict(f,XA) Un converse(restrict(g,YB))" is forced by the context!! *) val schroeder_bernstein = result(); (** Equipollence is an equivalence relation **) goalw Cardinal.thy [eqpoll_def] "X eqpoll X"; by (rtac exI 1); by (rtac id_bij 1); val eqpoll_refl = result(); goalw Cardinal.thy [eqpoll_def] "!!X Y. X eqpoll Y ==> Y eqpoll X"; by (fast_tac (ZF_cs addIs [bij_converse_bij]) 1); val eqpoll_sym = result(); goalw Cardinal.thy [eqpoll_def] "!!X Y. [| X eqpoll Y; Y eqpoll Z |] ==> X eqpoll Z"; by (fast_tac (ZF_cs addIs [comp_bij]) 1); val eqpoll_trans = result(); (** Le-pollence is a partial ordering **) goalw Cardinal.thy [lepoll_def] "!!X Y. X<=Y ==> X lepoll Y"; by (rtac exI 1); by (etac id_subset_inj 1); val subset_imp_lepoll = result(); val lepoll_refl = subset_refl RS subset_imp_lepoll; goalw Cardinal.thy [eqpoll_def, bij_def, lepoll_def] "!!X Y. X eqpoll Y ==> X lepoll Y"; by (fast_tac ZF_cs 1); val eqpoll_imp_lepoll = result(); goalw Cardinal.thy [lepoll_def] "!!X Y. [| X lepoll Y; Y lepoll Z |] ==> X lepoll Z"; by (fast_tac (ZF_cs addIs [comp_inj]) 1); val lepoll_trans = result(); (*Asymmetry law*) goalw Cardinal.thy [lepoll_def,eqpoll_def] "!!X Y. [| X lepoll Y; Y lepoll X |] ==> X eqpoll Y"; by (REPEAT (etac exE 1)); by (rtac schroeder_bernstein 1); by (REPEAT (assume_tac 1)); val eqpollI = result(); val [major,minor] = goal Cardinal.thy "[| X eqpoll Y; [| X lepoll Y; Y lepoll X |] ==> P |] ==> P"; by (rtac minor 1); by (REPEAT (resolve_tac [major, eqpoll_imp_lepoll, eqpoll_sym] 1)); val eqpollE = result(); goal Cardinal.thy "X eqpoll Y <-> X lepoll Y & Y lepoll X"; by (fast_tac (ZF_cs addIs [eqpollI] addSEs [eqpollE]) 1); val eqpoll_iff = result(); (** LEAST -- the least number operator [from HOL/Univ.ML] **) val [premP,premOrd,premNot] = goalw Cardinal.thy [Least_def] "[| P(i); Ord(i); !!x. x<i ==> ~P(x) |] ==> (LEAST x.P(x)) = i"; by (rtac the_equality 1); by (fast_tac (ZF_cs addSIs [premP,premOrd,premNot]) 1); by (REPEAT (etac conjE 1)); by (etac (premOrd RS Ord_linear_lt) 1); by (ALLGOALS (fast_tac (ZF_cs addSIs [premP] addSDs [premNot]))); val Least_equality = result(); goal Cardinal.thy "!!i. [| P(i); Ord(i) |] ==> P(LEAST x.P(x))"; by (etac rev_mp 1); by (trans_ind_tac "i" [] 1); by (rtac impI 1); by (rtac classical 1); by (EVERY1 [rtac (Least_equality RS ssubst), assume_tac, assume_tac]); by (assume_tac 2); by (fast_tac (ZF_cs addSEs [ltE]) 1); val LeastI = result(); (*Proof is almost identical to the one above!*) goal Cardinal.thy "!!i. [| P(i); Ord(i) |] ==> (LEAST x.P(x)) le i"; by (etac rev_mp 1); by (trans_ind_tac "i" [] 1); by (rtac impI 1); by (rtac classical 1); by (EVERY1 [rtac (Least_equality RS ssubst), assume_tac, assume_tac]); by (etac le_refl 2); by (fast_tac (ZF_cs addEs [ltE, lt_trans1] addIs [leI, ltI]) 1); val Least_le = result(); (*LEAST really is the smallest*) goal Cardinal.thy "!!i. [| P(i); i < (LEAST x.P(x)) |] ==> Q"; by (rtac (Least_le RSN (2,lt_trans2) RS lt_irrefl) 1); by (REPEAT (eresolve_tac [asm_rl, ltE] 1)); val less_LeastE = result(); (*If there is no such P then LEAST is vacuously 0*) goalw Cardinal.thy [Least_def] "!!P. [| ~ (EX i. Ord(i) & P(i)) |] ==> (LEAST x.P(x)) = 0"; by (rtac the_0 1); by (fast_tac ZF_cs 1); val Least_0 = result(); goal Cardinal.thy "Ord(LEAST x.P(x))"; by (excluded_middle_tac "EX i. Ord(i) & P(i)" 1); by (safe_tac ZF_cs); by (rtac (Least_le RS ltE) 2); by (REPEAT_SOME assume_tac); by (etac (Least_0 RS ssubst) 1); by (rtac Ord_0 1); val Ord_Least = result(); (** Basic properties of cardinals **) (*Not needed for simplification, but helpful below*) val prems = goal Cardinal.thy "[| !!y. P(y) <-> Q(y) |] ==> (LEAST x.P(x)) = (LEAST x.Q(x))"; by (simp_tac (FOL_ss addsimps prems) 1); val Least_cong = result(); (*Need AC to prove X lepoll Y ==> |X| le |Y| ; see well_ord_lepoll_imp_le *) goalw Cardinal.thy [eqpoll_def,cardinal_def] "!!X Y. X eqpoll Y ==> |X| = |Y|"; by (rtac Least_cong 1); by (fast_tac (ZF_cs addEs [comp_bij,bij_converse_bij]) 1); val cardinal_cong = result(); (*Under AC, the premise becomes trivial; one consequence is ||A|| = |A|*) goalw Cardinal.thy [eqpoll_def, cardinal_def] "!!A. well_ord(A,r) ==> |A| eqpoll A"; by (rtac LeastI 1); by (etac Ord_ordertype 2); by (rtac exI 1); by (etac (ordermap_bij RS bij_converse_bij) 1); val well_ord_cardinal_eqpoll = result(); val Ord_cardinal_eqpoll = well_ord_Memrel RS well_ord_cardinal_eqpoll |> standard; goal Cardinal.thy "!!X Y. [| well_ord(X,r); well_ord(Y,s); |X| = |Y| |] ==> X eqpoll Y"; by (rtac (eqpoll_sym RS eqpoll_trans) 1); by (etac well_ord_cardinal_eqpoll 1); by (asm_simp_tac (ZF_ss addsimps [well_ord_cardinal_eqpoll]) 1); val well_ord_cardinal_eqE = result(); (** Observations from Kunen, page 28 **) goalw Cardinal.thy [cardinal_def] "!!i. Ord(i) ==> |i| le i"; by (etac (eqpoll_refl RS Least_le) 1); val Ord_cardinal_le = result(); goalw Cardinal.thy [Card_def] "!!K. Card(K) ==> |K| = K"; by (etac sym 1); val Card_cardinal_eq = result(); val prems = goalw Cardinal.thy [Card_def,cardinal_def] "[| Ord(i); !!j. j<i ==> ~(j eqpoll i) |] ==> Card(i)"; by (rtac (Least_equality RS ssubst) 1); by (REPEAT (ares_tac ([refl,eqpoll_refl]@prems) 1)); val CardI = result(); goalw Cardinal.thy [Card_def, cardinal_def] "!!i. Card(i) ==> Ord(i)"; by (etac ssubst 1); by (rtac Ord_Least 1); val Card_is_Ord = result(); goalw Cardinal.thy [cardinal_def] "Ord(|A|)"; by (rtac Ord_Least 1); val Ord_cardinal = result(); goal Cardinal.thy "Card(0)"; by (rtac (Ord_0 RS CardI) 1); by (fast_tac (ZF_cs addSEs [ltE]) 1); val Card_0 = result(); val [premK,premL] = goal Cardinal.thy "[| Card(K); Card(L) |] ==> Card(K Un L)"; by (rtac ([premK RS Card_is_Ord, premL RS Card_is_Ord] MRS Ord_linear_le) 1); by (asm_simp_tac (ZF_ss addsimps [premL, le_imp_subset, subset_Un_iff RS iffD1]) 1); by (asm_simp_tac (ZF_ss addsimps [premK, le_imp_subset, subset_Un_iff2 RS iffD1]) 1); val Card_Un = result(); (*Infinite unions of cardinals? See Devlin, Lemma 6.7, page 98*) goalw Cardinal.thy [cardinal_def] "Card(|A|)"; by (excluded_middle_tac "EX i. Ord(i) & i eqpoll A" 1); by (etac (Least_0 RS ssubst) 1 THEN rtac Card_0 1); by (rtac (Ord_Least RS CardI) 1); by (safe_tac ZF_cs); by (rtac less_LeastE 1); by (assume_tac 2); by (etac eqpoll_trans 1); by (REPEAT (ares_tac [LeastI] 1)); val Card_cardinal = result(); (*Kunen's Lemma 10.5*) goal Cardinal.thy "!!i j. [| |i| le j; j le i |] ==> |j| = |i|"; by (rtac (eqpollI RS cardinal_cong) 1); by (etac (le_imp_subset RS subset_imp_lepoll) 1); by (rtac lepoll_trans 1); by (etac (le_imp_subset RS subset_imp_lepoll) 2); by (rtac (eqpoll_sym RS eqpoll_imp_lepoll) 1); by (rtac Ord_cardinal_eqpoll 1); by (REPEAT (eresolve_tac [ltE, Ord_succD] 1)); val cardinal_eq_lemma = result(); goal Cardinal.thy "!!i j. i le j ==> |i| le |j|"; by (res_inst_tac [("i","|i|"),("j","|j|")] Ord_linear_le 1); by (REPEAT_FIRST (ares_tac [Ord_cardinal, le_eqI])); by (rtac cardinal_eq_lemma 1); by (assume_tac 2); by (etac le_trans 1); by (etac ltE 1); by (etac Ord_cardinal_le 1); val cardinal_mono = result(); (*Since we have |succ(nat)| le |nat|, the converse of cardinal_mono fails!*) goal Cardinal.thy "!!i j. [| |i| < |j|; Ord(i); Ord(j) |] ==> i < j"; by (rtac Ord_linear2 1); by (REPEAT_SOME assume_tac); by (etac (lt_trans2 RS lt_irrefl) 1); by (etac cardinal_mono 1); val cardinal_lt_imp_lt = result(); goal Cardinal.thy "!!i j. [| |i| < K; Ord(i); Card(K) |] ==> i < K"; by (asm_simp_tac (ZF_ss addsimps [cardinal_lt_imp_lt, Card_is_Ord, Card_cardinal_eq]) 1); val Card_lt_imp_lt = result(); goal Cardinal.thy "!!i j. [| Ord(i); Card(K) |] ==> (|i| < K) <-> (i < K)"; by (fast_tac (ZF_cs addEs [Card_lt_imp_lt, Ord_cardinal_le RS lt_trans1]) 1); val Card_lt_iff = result(); goal Cardinal.thy "!!i j. [| Ord(i); Card(K) |] ==> (K le |i|) <-> (K le i)"; by (asm_simp_tac (ZF_ss addsimps [Card_lt_iff, Card_is_Ord, Ord_cardinal, not_lt_iff_le RS iff_sym]) 1); val Card_le_iff = result(); (** The swap operator [NOT USED] **) goalw Cardinal.thy [swap_def] "!!A. [| x:A; y:A |] ==> swap(A,x,y) : A->A"; by (REPEAT (ares_tac [lam_type,if_type] 1)); val swap_type = result(); goalw Cardinal.thy [swap_def] "!!A. [| x:A; y:A; z:A |] ==> swap(A,x,y)`(swap(A,x,y)`z) = z"; by (asm_simp_tac (ZF_ss setloop split_tac [expand_if]) 1); val swap_swap_identity = result(); goal Cardinal.thy "!!A. [| x:A; y:A |] ==> swap(A,x,y) : bij(A,A)"; by (rtac nilpotent_imp_bijective 1); by (REPEAT (ares_tac [swap_type, comp_eq_id_iff RS iffD2, ballI, swap_swap_identity] 1)); val swap_bij = result(); (*** The finite cardinals ***) (*Lemma suggested by Mike Fourman*) val [prem] = goalw Cardinal.thy [inj_def] "f: inj(succ(m), succ(n)) ==> (lam x:m. if(f`x=n, f`m, f`x)) : inj(m,n)"; by (rtac CollectI 1); (*Proving it's in the function space m->n*) by (cut_facts_tac [prem] 1); by (rtac (if_type RS lam_type) 1); by (fast_tac (ZF_cs addSEs [mem_irrefl] addEs [apply_funtype RS succE]) 1); by (fast_tac (ZF_cs addSEs [mem_irrefl] addEs [apply_funtype RS succE]) 1); (*Proving it's injective*) by (asm_simp_tac (ZF_ss setloop split_tac [expand_if]) 1); (*Adding prem earlier would cause the simplifier to loop*) by (cut_facts_tac [prem] 1); by (fast_tac (ZF_cs addSEs [mem_irrefl]) 1); val inj_succ_succD = result(); val [prem] = goalw Cardinal.thy [lepoll_def] "m:nat ==> ALL n: nat. m lepoll n --> m le n"; by (nat_ind_tac "m" [prem] 1); by (fast_tac (ZF_cs addSIs [nat_0_le]) 1); by (rtac ballI 1); by (eres_inst_tac [("n","n")] natE 1); by (asm_simp_tac (ZF_ss addsimps [inj_def, succI1 RS Pi_empty2]) 1); by (fast_tac (ZF_cs addSIs [succ_leI] addSDs [inj_succ_succD]) 1); val nat_lepoll_imp_le_lemma = result(); val nat_lepoll_imp_le = nat_lepoll_imp_le_lemma RS bspec RS mp |> standard; goal Cardinal.thy "!!m n. [| m:nat; n: nat |] ==> m eqpoll n <-> m = n"; by (rtac iffI 1); by (asm_simp_tac (ZF_ss addsimps [eqpoll_refl]) 2); by (fast_tac (ZF_cs addIs [nat_lepoll_imp_le, le_anti_sym] addSEs [eqpollE]) 1); val nat_eqpoll_iff = result(); goalw Cardinal.thy [Card_def,cardinal_def] "!!n. n: nat ==> Card(n)"; by (rtac (Least_equality RS ssubst) 1); by (REPEAT_FIRST (ares_tac [eqpoll_refl, nat_into_Ord, refl])); by (asm_simp_tac (ZF_ss addsimps [lt_nat_in_nat RS nat_eqpoll_iff]) 1); by (fast_tac (ZF_cs addSEs [lt_irrefl]) 1); val nat_into_Card = result(); (*Part of Kunen's Lemma 10.6*) goal Cardinal.thy "!!n. [| succ(n) lepoll n; n:nat |] ==> P"; by (rtac (nat_lepoll_imp_le RS lt_irrefl) 1); by (REPEAT (ares_tac [nat_succI] 1)); val succ_lepoll_natE = result(); (*** The first infinite cardinal: Omega, or nat ***) (*This implies Kunen's Lemma 10.6*) goal Cardinal.thy "!!n. [| n<i; n:nat |] ==> ~ i lepoll n"; by (rtac notI 1); by (rtac succ_lepoll_natE 1 THEN assume_tac 2); by (rtac lepoll_trans 1 THEN assume_tac 2); by (etac ltE 1); by (REPEAT (ares_tac [Ord_succ_subsetI RS subset_imp_lepoll] 1)); val lt_not_lepoll = result(); goal Cardinal.thy "!!i n. [| Ord(i); n:nat |] ==> i eqpoll n <-> i=n"; by (rtac iffI 1); by (asm_simp_tac (ZF_ss addsimps [eqpoll_refl]) 2); by (rtac Ord_linear_lt 1); by (REPEAT_SOME (eresolve_tac [asm_rl, nat_into_Ord])); by (etac (lt_nat_in_nat RS nat_eqpoll_iff RS iffD1) 1 THEN REPEAT (assume_tac 1)); by (rtac (lt_not_lepoll RS notE) 1 THEN (REPEAT (assume_tac 1))); by (etac eqpoll_imp_lepoll 1); val Ord_nat_eqpoll_iff = result(); goalw Cardinal.thy [Card_def,cardinal_def] "Card(nat)"; by (rtac (Least_equality RS ssubst) 1); by (REPEAT_FIRST (ares_tac [eqpoll_refl, Ord_nat, refl])); by (etac ltE 1); by (asm_simp_tac (ZF_ss addsimps [eqpoll_iff, lt_not_lepoll, ltI]) 1); val Card_nat = result(); (*Allows showing that |i| is a limit cardinal*) goal Cardinal.thy "!!i. nat le i ==> nat le |i|"; by (rtac (Card_nat RS Card_cardinal_eq RS subst) 1); by (etac cardinal_mono 1); val nat_le_cardinal = result(); (*** Towards Cardinal Arithmetic ***) (** Congruence laws for successor, cardinal addition and multiplication **) val case_ss = ZF_ss addsimps [Inl_iff, Inl_Inr_iff, Inr_iff, Inr_Inl_iff, case_Inl, case_Inr, InlI, InrI]; val bij_inverse_ss = case_ss addsimps [bij_is_fun RS apply_type, bij_converse_bij RS bij_is_fun RS apply_type, left_inverse_bij, right_inverse_bij]; (*Congruence law for cons under equipollence*) goalw Cardinal.thy [lepoll_def] "!!A B. [| A lepoll B; b ~: B |] ==> cons(a,A) lepoll cons(b,B)"; by (safe_tac ZF_cs); by (res_inst_tac [("x", "lam y: cons(a,A).if(y=a, b, f`y)")] exI 1); by (res_inst_tac [("d","%z.if(z:B, converse(f)`z, a)")] lam_injective 1); by (asm_simp_tac (ZF_ss addsimps [inj_is_fun RS apply_type, cons_iff] setloop etac consE') 1); by (asm_simp_tac (ZF_ss addsimps [inj_is_fun RS apply_type, left_inverse] setloop etac consE') 1); val cons_lepoll_cong = result(); goal Cardinal.thy "!!A B. [| A eqpoll B; a ~: A; b ~: B |] ==> cons(a,A) eqpoll cons(b,B)"; by (asm_full_simp_tac (ZF_ss addsimps [eqpoll_iff, cons_lepoll_cong]) 1); val cons_eqpoll_cong = result(); (*Congruence law for succ under equipollence*) goalw Cardinal.thy [succ_def] "!!A B. A eqpoll B ==> succ(A) eqpoll succ(B)"; by (REPEAT (ares_tac [cons_eqpoll_cong, mem_not_refl] 1)); val succ_eqpoll_cong = result(); (*Congruence law for + under equipollence*) goalw Cardinal.thy [eqpoll_def] "!!A B C D. [| A eqpoll C; B eqpoll D |] ==> A+B eqpoll C+D"; by (safe_tac ZF_cs); by (rtac exI 1); by (res_inst_tac [("c", "case(%x. Inl(f`x), %y. Inr(fa`y))"), ("d", "case(%x. Inl(converse(f)`x), %y. Inr(converse(fa)`y))")] lam_bijective 1); by (safe_tac (ZF_cs addSEs [sumE])); by (ALLGOALS (asm_simp_tac bij_inverse_ss)); val sum_eqpoll_cong = result(); (*Congruence law for * under equipollence*) goalw Cardinal.thy [eqpoll_def] "!!A B C D. [| A eqpoll C; B eqpoll D |] ==> A*B eqpoll C*D"; by (safe_tac ZF_cs); by (rtac exI 1); by (res_inst_tac [("c", "split(%x y. <f`x, fa`y>)"), ("d", "split(%x y. <converse(f)`x, converse(fa)`y>)")] lam_bijective 1); by (safe_tac ZF_cs); by (ALLGOALS (asm_simp_tac bij_inverse_ss)); val prod_eqpoll_cong = result(); goalw Cardinal.thy [eqpoll_def] "!!f. [| f: inj(A,B); A Int B = 0 |] ==> A Un (B - range(f)) eqpoll B"; by (rtac exI 1); by (res_inst_tac [("c", "%x. if(x:A, f`x, x)"), ("d", "%y. if(y: range(f), converse(f)`y, y)")] lam_bijective 1); by (fast_tac (ZF_cs addSIs [if_type, apply_type] addIs [inj_is_fun]) 1); by (asm_simp_tac (ZF_ss addsimps [inj_converse_fun RS apply_funtype] setloop split_tac [expand_if]) 1); by (asm_simp_tac (ZF_ss addsimps [inj_is_fun RS apply_rangeI, left_inverse] setloop etac UnE') 1); by (asm_simp_tac (ZF_ss addsimps [inj_converse_fun RS apply_funtype, right_inverse] setloop split_tac [expand_if]) 1); by (fast_tac (ZF_cs addEs [equals0D]) 1); val inj_disjoint_eqpoll = result();