src/ZF/QPair.thy
author clasohm
Sat, 09 Dec 1995 13:36:11 +0100
changeset 1401 0c439768f45c
parent 1097 01379c46ad2d
child 1478 2b8c2a7547ab
permissions -rw-r--r--
removed quotes from consts and syntax sections

(*  Title: 	ZF/qpair.thy
    ID:         $Id$
    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
    Copyright   1993  University of Cambridge

Quine-inspired ordered pairs and disjoint sums, for non-well-founded data
structures in ZF.  Does not precisely follow Quine's construction.  Thanks
to Thomas Forster for suggesting this approach!

W. V. Quine, On Ordered Pairs and Relations, in Selected Logic Papers,
1966.
*)

QPair = Sum + "simpdata" +
consts
  QPair     :: [i, i] => i               	("<(_;/ _)>")
  qfst,qsnd :: i => i
  qsplit    :: [[i, i] => 'a, i] => 'a::logic  (*for pattern-matching*)
  qconverse :: i => i
  QSigma    :: [i, i => i] => i

  "<+>"     :: [i,i]=>i      			(infixr 65)
  QInl,QInr :: i=>i
  qcase     :: [i=>i, i=>i, i]=>i

syntax
  "@QSUM"   :: [idt, i, i] => i               ("(3QSUM _:_./ _)" 10)
  "<*>"     :: [i, i] => i         		(infixr 80)

translations
  "QSUM x:A. B"  => "QSigma(A, %x. B)"
  "A <*> B"      => "QSigma(A, _K(B))"

defs
  QPair_def       "<a;b> == a+b"
  qfst_def        "qfst(p) == THE a. EX b. p=<a;b>"
  qsnd_def        "qsnd(p) == THE b. EX a. p=<a;b>"
  qsplit_def      "qsplit(c,p) == c(qfst(p), qsnd(p))"

  qconverse_def   "qconverse(r) == {z. w:r, EX x y. w=<x;y> & z=<y;x>}"
  QSigma_def      "QSigma(A,B)  ==  UN x:A. UN y:B(x). {<x;y>}"

  qsum_def        "A <+> B      == ({0} <*> A) Un ({1} <*> B)"
  QInl_def        "QInl(a)      == <0;a>"
  QInr_def        "QInr(b)      == <1;b>"
  qcase_def       "qcase(c,d)   == qsplit(%y z. cond(y, d(z), c(z)))"
end

ML

val print_translation =
  [("QSigma", dependent_tr' ("@QSUM", "op <*>"))];