(*  Title:      HOL/Library/Z2.thy
    Author:     Brian Huffman
*)
section \<open>The Field of Integers mod 2\<close>
theory Z2
imports Main
begin
text \<open>
  Note that in most cases \<^typ>\<open>bool\<close> is appropriate when a binary type is needed; the
  type provided here, for historical reasons named \<^text>\<open>bit\<close>, is only needed if proper
  field operations are required.
\<close>
typedef bit = \<open>UNIV :: bool set\<close> ..
instantiation bit :: zero_neq_one
begin
definition zero_bit :: bit
  where \<open>0 = Abs_bit False\<close>
definition one_bit :: bit
  where \<open>1 = Abs_bit True\<close>
instance
  by standard (simp add: zero_bit_def one_bit_def Abs_bit_inject)
end
free_constructors case_bit for \<open>0::bit\<close> | \<open>1::bit\<close>
proof -
  fix P :: bool
  fix a :: bit
  assume \<open>a = 0 \<Longrightarrow> P\<close> and \<open>a = 1 \<Longrightarrow> P\<close>
  then show P
    by (cases a) (auto simp add: zero_bit_def one_bit_def Abs_bit_inject)
qed simp
lemma bit_not_zero_iff [simp]:
  \<open>a \<noteq> 0 \<longleftrightarrow> a = 1\<close> for a :: bit
  by (cases a) simp_all
lemma bit_not_one_iff [simp]:
  \<open>a \<noteq> 1 \<longleftrightarrow> a = 0\<close> for a :: bit
  by (cases a) simp_all
instantiation bit :: semidom_modulo
begin
definition plus_bit :: \<open>bit \<Rightarrow> bit \<Rightarrow> bit\<close>
  where \<open>a + b = Abs_bit (Rep_bit a \<noteq> Rep_bit b)\<close>
definition minus_bit :: \<open>bit \<Rightarrow> bit \<Rightarrow> bit\<close>
  where [simp]: \<open>minus_bit = plus\<close>
definition times_bit :: \<open>bit \<Rightarrow> bit \<Rightarrow> bit\<close>
  where \<open>a * b = Abs_bit (Rep_bit a \<and> Rep_bit b)\<close>
definition divide_bit :: \<open>bit \<Rightarrow> bit \<Rightarrow> bit\<close>
  where [simp]: \<open>divide_bit = times\<close>
definition modulo_bit :: \<open>bit \<Rightarrow> bit \<Rightarrow> bit\<close>
  where \<open>a mod b = Abs_bit (Rep_bit a \<and> \<not> Rep_bit b)\<close>
instance
  by standard
    (auto simp flip: Rep_bit_inject
    simp add: zero_bit_def one_bit_def plus_bit_def times_bit_def modulo_bit_def Abs_bit_inverse Rep_bit_inverse)
end
lemma bit_2_eq_0 [simp]:
  \<open>2 = (0::bit)\<close>
  by (simp flip: one_add_one add: zero_bit_def plus_bit_def)
instance bit :: semiring_parity
  apply standard
    apply (auto simp flip: Rep_bit_inject simp add: modulo_bit_def Abs_bit_inverse Rep_bit_inverse)
         apply (auto simp add: zero_bit_def one_bit_def Abs_bit_inverse Rep_bit_inverse)
  done
lemma Abs_bit_eq_of_bool [code_abbrev]:
  \<open>Abs_bit = of_bool\<close>
  by (simp add: fun_eq_iff zero_bit_def one_bit_def)
lemma Rep_bit_eq_odd:
  \<open>Rep_bit = odd\<close>
proof -
  have \<open>\<not> Rep_bit 0\<close>
    by (simp only: zero_bit_def) (subst Abs_bit_inverse, auto)
  then show ?thesis
    by (auto simp flip: Rep_bit_inject simp add: fun_eq_iff)
qed
lemma Rep_bit_iff_odd [code_abbrev]:
  \<open>Rep_bit b \<longleftrightarrow> odd b\<close>
  by (simp add: Rep_bit_eq_odd)
lemma Not_Rep_bit_iff_even [code_abbrev]:
  \<open>\<not> Rep_bit b \<longleftrightarrow> even b\<close>
  by (simp add: Rep_bit_eq_odd)
lemma Not_Not_Rep_bit [code_unfold]:
  \<open>\<not> \<not> Rep_bit b \<longleftrightarrow> Rep_bit b\<close>
  by simp
code_datatype \<open>0::bit\<close> \<open>1::bit\<close>
lemma Abs_bit_code [code]:
  \<open>Abs_bit False = 0\<close>
  \<open>Abs_bit True = 1\<close>
  by (simp_all add: Abs_bit_eq_of_bool)
lemma Rep_bit_code [code]:
  \<open>Rep_bit 0 \<longleftrightarrow> False\<close>
  \<open>Rep_bit 1 \<longleftrightarrow> True\<close>
  by (simp_all add: Rep_bit_eq_odd)
context zero_neq_one
begin
abbreviation of_bit :: \<open>bit \<Rightarrow> 'a\<close>
  where \<open>of_bit b \<equiv> of_bool (odd b)\<close>
end
context
begin
qualified lemma bit_eq_iff:
  \<open>a = b \<longleftrightarrow> (even a \<longleftrightarrow> even b)\<close> for a b :: bit
  by (cases a; cases b) simp_all
end
lemma modulo_bit_unfold [simp, code]:
  \<open>a mod b = of_bool (odd a \<and> even b)\<close> for a b :: bit
  by (simp add: modulo_bit_def Abs_bit_eq_of_bool Rep_bit_eq_odd)
lemma power_bit_unfold [simp]:
  \<open>a ^ n = of_bool (odd a \<or> n = 0)\<close> for a :: bit
  by (cases a) simp_all
instantiation bit :: field
begin
definition uminus_bit :: \<open>bit \<Rightarrow> bit\<close>
  where [simp]: \<open>uminus_bit = id\<close>
definition inverse_bit :: \<open>bit \<Rightarrow> bit\<close>
  where [simp]: \<open>inverse_bit = id\<close>
instance
  apply standard
      apply simp_all
  apply (simp only: Z2.bit_eq_iff even_add even_zero refl)
  done
end
instantiation bit :: semiring_bits
begin
definition bit_bit :: \<open>bit \<Rightarrow> nat \<Rightarrow> bool\<close>
  where [simp]: \<open>bit_bit b n \<longleftrightarrow> odd b \<and> n = 0\<close>
instance
  by standard
    (auto intro: Abs_bit_induct simp add: Abs_bit_eq_of_bool)
end
instantiation bit :: ring_bit_operations
begin
context
  includes bit_operations_syntax
begin
definition not_bit :: \<open>bit \<Rightarrow> bit\<close>
  where [simp]: \<open>NOT b = of_bool (even b)\<close> for b :: bit
definition and_bit :: \<open>bit \<Rightarrow> bit \<Rightarrow> bit\<close>
  where [simp]: \<open>b AND c = of_bool (odd b \<and> odd c)\<close> for b c :: bit
definition or_bit :: \<open>bit \<Rightarrow> bit \<Rightarrow> bit\<close>
  where [simp]: \<open>b OR c = of_bool (odd b \<or> odd c)\<close> for b c :: bit
definition xor_bit :: \<open>bit \<Rightarrow> bit \<Rightarrow> bit\<close>
  where [simp]: \<open>b XOR c = of_bool (odd b \<noteq> odd c)\<close> for b c :: bit
definition mask_bit :: \<open>nat \<Rightarrow> bit\<close>
  where [simp]: \<open>mask n = (of_bool (n > 0) :: bit)\<close>
definition set_bit_bit :: \<open>nat \<Rightarrow> bit \<Rightarrow> bit\<close>
  where [simp]: \<open>set_bit n b = of_bool (n = 0 \<or> odd b)\<close> for b :: bit
definition unset_bit_bit :: \<open>nat \<Rightarrow> bit \<Rightarrow> bit\<close>
  where [simp]: \<open>unset_bit n b = of_bool (n > 0 \<and> odd b)\<close> for b :: bit
definition flip_bit_bit :: \<open>nat \<Rightarrow> bit \<Rightarrow> bit\<close>
  where [simp]: \<open>flip_bit n b = of_bool ((n = 0) \<noteq> odd b)\<close> for b :: bit
definition push_bit_bit :: \<open>nat \<Rightarrow> bit \<Rightarrow> bit\<close>
  where [simp]: \<open>push_bit n b = of_bool (odd b \<and> n = 0)\<close> for b :: bit
definition drop_bit_bit :: \<open>nat \<Rightarrow> bit \<Rightarrow> bit\<close>
  where [simp]: \<open>drop_bit n b = of_bool (odd b \<and> n = 0)\<close> for b :: bit
definition take_bit_bit :: \<open>nat \<Rightarrow> bit \<Rightarrow> bit\<close>
  where [simp]: \<open>take_bit n b = of_bool (odd b \<and> n > 0)\<close> for b :: bit
end
instance
  by standard auto
end
lemma add_bit_eq_xor [simp, code]:
  \<open>(+) = (Bit_Operations.xor :: bit \<Rightarrow> _)\<close>
  by (auto simp add: fun_eq_iff)
lemma mult_bit_eq_and [simp, code]:
  \<open>(*) = (Bit_Operations.and :: bit \<Rightarrow> _)\<close>
  by (simp add: fun_eq_iff)
lemma bit_numeral_even [simp]:
  \<open>numeral (Num.Bit0 n) = (0 :: bit)\<close>
  by (simp only: Z2.bit_eq_iff even_numeral) simp
lemma bit_numeral_odd [simp]:
  \<open>numeral (Num.Bit1 n) = (1 :: bit)\<close>
  by (simp only: Z2.bit_eq_iff odd_numeral)  simp
end