(* Title: HOL/Tools/arith_data.ML
Author: Markus Wenzel, Stefan Berghofer, and Tobias Nipkow
Common arithmetic proof auxiliary and legacy.
*)
signature ARITH_DATA =
sig
val arith_tac: Proof.context -> int -> tactic
val verbose_arith_tac: Proof.context -> int -> tactic
val add_tactic: string -> (bool -> Proof.context -> int -> tactic) -> theory -> theory
val get_arith_facts: Proof.context -> thm list
val mk_number: typ -> int -> term
val mk_sum: typ -> term list -> term
val long_mk_sum: typ -> term list -> term
val dest_sum: term -> term list
val prove_conv_nohyps: tactic list -> Proof.context -> term * term -> thm option
val prove_conv: tactic list -> Proof.context -> thm list -> term * term -> thm option
val prove_conv2: tactic -> (simpset -> tactic) -> simpset -> term * term -> thm
val simp_all_tac: thm list -> simpset -> tactic
val simplify_meta_eq: thm list -> simpset -> thm -> thm
val setup: theory -> theory
end;
structure Arith_Data: ARITH_DATA =
struct
(* slots for plugging in arithmetic facts and tactics *)
structure Arith_Facts = Named_Thms
(
val name = @{binding arith}
val description = "arith facts -- only ground formulas"
);
val get_arith_facts = Arith_Facts.get;
structure Arith_Tactics = Theory_Data
(
type T = (serial * (string * (bool -> Proof.context -> int -> tactic))) list;
val empty = [];
val extend = I;
fun merge data : T = AList.merge (op =) (K true) data;
);
fun add_tactic name tac = Arith_Tactics.map (cons (serial (), (name, tac)));
fun gen_arith_tac verbose ctxt =
let
val tactics = Arith_Tactics.get (Proof_Context.theory_of ctxt);
fun invoke (_, (name, tac)) k st = tac verbose ctxt k st;
in FIRST' (map invoke (rev tactics)) end;
val arith_tac = gen_arith_tac false;
val verbose_arith_tac = gen_arith_tac true;
val setup =
Arith_Facts.setup #>
Method.setup @{binding arith}
(Scan.succeed (fn ctxt =>
METHOD (fn facts => HEADGOAL (Method.insert_tac (get_arith_facts ctxt @ facts)
THEN' verbose_arith_tac ctxt))))
"various arithmetic decision procedures";
(* some specialized syntactic operations *)
fun mk_number T n = HOLogic.number_of_const T $ HOLogic.mk_numeral n;
val mk_plus = HOLogic.mk_binop @{const_name Groups.plus};
fun mk_minus t =
let val T = Term.fastype_of t
in Const (@{const_name Groups.uminus}, T --> T) $ t end;
(*Thus mk_sum[t] yields t+0; longer sums don't have a trailing zero*)
fun mk_sum T [] = mk_number T 0
| mk_sum T [t, u] = mk_plus (t, u)
| mk_sum T (t :: ts) = mk_plus (t, mk_sum T ts);
(*this version ALWAYS includes a trailing zero*)
fun long_mk_sum T [] = mk_number T 0
| long_mk_sum T (t :: ts) = mk_plus (t, mk_sum T ts);
(*decompose additions AND subtractions as a sum*)
fun dest_summing (pos, Const (@{const_name Groups.plus}, _) $ t $ u, ts) =
dest_summing (pos, t, dest_summing (pos, u, ts))
| dest_summing (pos, Const (@{const_name Groups.minus}, _) $ t $ u, ts) =
dest_summing (pos, t, dest_summing (not pos, u, ts))
| dest_summing (pos, t, ts) = (if pos then t else mk_minus t) :: ts;
fun dest_sum t = dest_summing (true, t, []);
(* various auxiliary and legacy *)
fun prove_conv_nohyps tacs ctxt (t, u) =
if t aconv u then NONE
else let val eq = HOLogic.mk_Trueprop (HOLogic.mk_eq (t, u))
in SOME (Goal.prove ctxt [] [] eq (K (EVERY tacs))) end;
fun prove_conv tacs ctxt (_: thm list) = prove_conv_nohyps tacs ctxt;
fun prove_conv2 expand_tac norm_tac ss tu = (* FIXME avoid Drule.export_without_context *)
mk_meta_eq (Drule.export_without_context (Goal.prove (Simplifier.the_context ss) [] []
(HOLogic.mk_Trueprop (HOLogic.mk_eq tu))
(K (EVERY [expand_tac, norm_tac ss]))));
fun simp_all_tac rules =
let val ss0 = HOL_ss addsimps rules
in fn ss => ALLGOALS (simp_tac (Simplifier.inherit_context ss ss0)) end;
fun simplify_meta_eq rules =
let val ss0 = HOL_basic_ss addsimps rules |> Simplifier.add_eqcong @{thm eq_cong2}
in fn ss => simplify (Simplifier.inherit_context ss ss0) o mk_meta_eq end
end;