Restructured algebra library, added ideals and quotient rings.
(* Title: HOL/IMPP/Natural.thy
ID: $Id$
Author: David von Oheimb (based on a theory by Tobias Nipkow et al), TUM
Copyright 1999 TUM
*)
header {* Natural semantics of commands *}
theory Natural
imports Com
begin
(** Execution of commands **)
consts
evalc :: "(com * state * state) set"
evaln :: "(com * state * nat * state) set"
syntax
"@evalc":: "[com,state, state] => bool" ("<_,_>/ -c-> _" [0,0, 51] 51)
"@evaln":: "[com,state,nat,state] => bool" ("<_,_>/ -_-> _" [0,0,0,51] 51)
translations
"<c,s> -c-> s'" == "(c,s, s') : evalc"
"<c,s> -n-> s'" == "(c,s,n,s') : evaln"
consts
newlocs :: locals
setlocs :: "state => locals => state"
getlocs :: "state => locals"
update :: "state => vname => val => state" ("_/[_/::=/_]" [900,0,0] 900)
syntax (* IN Natural.thy *)
loc :: "state => locals" ("_<_>" [75,0] 75)
translations
"s<X>" == "getlocs s X"
inductive evalc
intros
Skip: "<SKIP,s> -c-> s"
Assign: "<X :== a,s> -c-> s[X::=a s]"
Local: "<c, s0[Loc Y::= a s0]> -c-> s1 ==>
<LOCAL Y := a IN c, s0> -c-> s1[Loc Y::=s0<Y>]"
Semi: "[| <c0,s0> -c-> s1; <c1,s1> -c-> s2 |] ==>
<c0;; c1, s0> -c-> s2"
IfTrue: "[| b s; <c0,s> -c-> s1 |] ==>
<IF b THEN c0 ELSE c1, s> -c-> s1"
IfFalse: "[| ~b s; <c1,s> -c-> s1 |] ==>
<IF b THEN c0 ELSE c1, s> -c-> s1"
WhileFalse: "~b s ==> <WHILE b DO c,s> -c-> s"
WhileTrue: "[| b s0; <c,s0> -c-> s1; <WHILE b DO c, s1> -c-> s2 |] ==>
<WHILE b DO c, s0> -c-> s2"
Body: "<the (body pn), s0> -c-> s1 ==>
<BODY pn, s0> -c-> s1"
Call: "<BODY pn, (setlocs s0 newlocs)[Loc Arg::=a s0]> -c-> s1 ==>
<X:=CALL pn(a), s0> -c-> (setlocs s1 (getlocs s0))
[X::=s1<Res>]"
inductive evaln
intros
Skip: "<SKIP,s> -n-> s"
Assign: "<X :== a,s> -n-> s[X::=a s]"
Local: "<c, s0[Loc Y::= a s0]> -n-> s1 ==>
<LOCAL Y := a IN c, s0> -n-> s1[Loc Y::=s0<Y>]"
Semi: "[| <c0,s0> -n-> s1; <c1,s1> -n-> s2 |] ==>
<c0;; c1, s0> -n-> s2"
IfTrue: "[| b s; <c0,s> -n-> s1 |] ==>
<IF b THEN c0 ELSE c1, s> -n-> s1"
IfFalse: "[| ~b s; <c1,s> -n-> s1 |] ==>
<IF b THEN c0 ELSE c1, s> -n-> s1"
WhileFalse: "~b s ==> <WHILE b DO c,s> -n-> s"
WhileTrue: "[| b s0; <c,s0> -n-> s1; <WHILE b DO c, s1> -n-> s2 |] ==>
<WHILE b DO c, s0> -n-> s2"
Body: "<the (body pn), s0> - n-> s1 ==>
<BODY pn, s0> -Suc n-> s1"
Call: "<BODY pn, (setlocs s0 newlocs)[Loc Arg::=a s0]> -n-> s1 ==>
<X:=CALL pn(a), s0> -n-> (setlocs s1 (getlocs s0))
[X::=s1<Res>]"
inductive_cases evalc_elim_cases:
"<SKIP,s> -c-> t" "<X:==a,s> -c-> t" "<LOCAL Y:=a IN c,s> -c-> t"
"<c1;;c2,s> -c-> t" "<IF b THEN c1 ELSE c2,s> -c-> t"
"<BODY P,s> -c-> s1" "<X:=CALL P(a),s> -c-> s1"
inductive_cases evaln_elim_cases:
"<SKIP,s> -n-> t" "<X:==a,s> -n-> t" "<LOCAL Y:=a IN c,s> -n-> t"
"<c1;;c2,s> -n-> t" "<IF b THEN c1 ELSE c2,s> -n-> t"
"<BODY P,s> -n-> s1" "<X:=CALL P(a),s> -n-> s1"
inductive_cases evalc_WHILE_case: "<WHILE b DO c,s> -c-> t"
inductive_cases evaln_WHILE_case: "<WHILE b DO c,s> -n-> t"
declare evalc.intros [intro]
declare evaln.intros [intro]
declare evalc_elim_cases [elim!]
declare evaln_elim_cases [elim!]
(* evaluation of com is deterministic *)
lemma com_det [rule_format (no_asm)]: "<c,s> -c-> t ==> (!u. <c,s> -c-> u --> u=t)"
apply (erule evalc.induct)
apply (erule_tac [8] V = "<?c,s1> -c-> s2" in thin_rl)
(*blast_tac needs Unify.search_bound := 40*)
apply (best elim: evalc_WHILE_case)+
done
lemma evaln_evalc: "<c,s> -n-> t ==> <c,s> -c-> t"
apply (erule evaln.induct)
apply (tactic {* ALLGOALS (resolve_tac (thms "evalc.intros") THEN_ALL_NEW atac) *})
done
lemma Suc_le_D_lemma: "[| Suc n <= m'; (!!m. n <= m ==> P (Suc m)) |] ==> P m'"
apply (frule Suc_le_D)
apply blast
done
lemma evaln_nonstrict [rule_format]: "<c,s> -n-> t ==> !m. n<=m --> <c,s> -m-> t"
apply (erule evaln.induct)
apply (tactic {* ALLGOALS (EVERY'[strip_tac,TRY o etac (thm "Suc_le_D_lemma"), REPEAT o smp_tac 1]) *})
apply (tactic {* ALLGOALS (resolve_tac (thms "evaln.intros") THEN_ALL_NEW atac) *})
done
lemma evaln_Suc: "<c,s> -n-> s' ==> <c,s> -Suc n-> s'"
apply (erule evaln_nonstrict)
apply auto
done
lemma evaln_max2: "[| <c1,s1> -n1-> t1; <c2,s2> -n2-> t2 |] ==>
? n. <c1,s1> -n -> t1 & <c2,s2> -n -> t2"
apply (cut_tac m = "n1" and n = "n2" in nat_le_linear)
apply (blast dest: evaln_nonstrict)
done
lemma evalc_evaln: "<c,s> -c-> t ==> ? n. <c,s> -n-> t"
apply (erule evalc.induct)
apply (tactic {* ALLGOALS (REPEAT o etac exE) *})
apply (tactic {* TRYALL (EVERY'[datac (thm "evaln_max2") 1, REPEAT o eresolve_tac [exE, conjE]]) *})
apply (tactic {* ALLGOALS (rtac exI THEN' resolve_tac (thms "evaln.intros") THEN_ALL_NEW atac) *})
done
lemma eval_eq: "<c,s> -c-> t = (? n. <c,s> -n-> t)"
apply (fast elim: evalc_evaln evaln_evalc)
done
end