Restructured algebra library, added ideals and quotient rings.
(* Title: HOL/UNITY/Follows
ID: $Id$
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1998 University of Cambridge
*)
header{*The Follows Relation of Charpentier and Sivilotte*}
theory Follows imports SubstAx ListOrder Multiset begin
constdefs
Follows :: "['a => 'b::{order}, 'a => 'b::{order}] => 'a program set"
(infixl "Fols" 65)
"f Fols g == Increasing g \<inter> Increasing f Int
Always {s. f s \<le> g s} Int
(\<Inter>k. {s. k \<le> g s} LeadsTo {s. k \<le> f s})"
(*Does this hold for "invariant"?*)
lemma mono_Always_o:
"mono h ==> Always {s. f s \<le> g s} \<subseteq> Always {s. h (f s) \<le> h (g s)}"
apply (simp add: Always_eq_includes_reachable)
apply (blast intro: monoD)
done
lemma mono_LeadsTo_o:
"mono (h::'a::order => 'b::order)
==> (\<Inter>j. {s. j \<le> g s} LeadsTo {s. j \<le> f s}) \<subseteq>
(\<Inter>k. {s. k \<le> h (g s)} LeadsTo {s. k \<le> h (f s)})"
apply auto
apply (rule single_LeadsTo_I)
apply (drule_tac x = "g s" in spec)
apply (erule LeadsTo_weaken)
apply (blast intro: monoD order_trans)+
done
lemma Follows_constant [iff]: "F \<in> (%s. c) Fols (%s. c)"
by (simp add: Follows_def)
lemma mono_Follows_o: "mono h ==> f Fols g \<subseteq> (h o f) Fols (h o g)"
by (auto simp add: Follows_def mono_Increasing_o [THEN [2] rev_subsetD]
mono_Always_o [THEN [2] rev_subsetD]
mono_LeadsTo_o [THEN [2] rev_subsetD, THEN INT_D])
lemma mono_Follows_apply:
"mono h ==> f Fols g \<subseteq> (%x. h (f x)) Fols (%x. h (g x))"
apply (drule mono_Follows_o)
apply (force simp add: o_def)
done
lemma Follows_trans:
"[| F \<in> f Fols g; F \<in> g Fols h |] ==> F \<in> f Fols h"
apply (simp add: Follows_def)
apply (simp add: Always_eq_includes_reachable)
apply (blast intro: order_trans LeadsTo_Trans)
done
subsection{*Destruction rules*}
lemma Follows_Increasing1: "F \<in> f Fols g ==> F \<in> Increasing f"
by (simp add: Follows_def)
lemma Follows_Increasing2: "F \<in> f Fols g ==> F \<in> Increasing g"
by (simp add: Follows_def)
lemma Follows_Bounded: "F \<in> f Fols g ==> F \<in> Always {s. f s \<subseteq> g s}"
by (simp add: Follows_def)
lemma Follows_LeadsTo:
"F \<in> f Fols g ==> F \<in> {s. k \<le> g s} LeadsTo {s. k \<le> f s}"
by (simp add: Follows_def)
lemma Follows_LeadsTo_pfixLe:
"F \<in> f Fols g ==> F \<in> {s. k pfixLe g s} LeadsTo {s. k pfixLe f s}"
apply (rule single_LeadsTo_I, clarify)
apply (drule_tac k="g s" in Follows_LeadsTo)
apply (erule LeadsTo_weaken)
apply blast
apply (blast intro: pfixLe_trans prefix_imp_pfixLe)
done
lemma Follows_LeadsTo_pfixGe:
"F \<in> f Fols g ==> F \<in> {s. k pfixGe g s} LeadsTo {s. k pfixGe f s}"
apply (rule single_LeadsTo_I, clarify)
apply (drule_tac k="g s" in Follows_LeadsTo)
apply (erule LeadsTo_weaken)
apply blast
apply (blast intro: pfixGe_trans prefix_imp_pfixGe)
done
lemma Always_Follows1:
"[| F \<in> Always {s. f s = f' s}; F \<in> f Fols g |] ==> F \<in> f' Fols g"
apply (simp add: Follows_def Increasing_def Stable_def, auto)
apply (erule_tac [3] Always_LeadsTo_weaken)
apply (erule_tac A = "{s. z \<le> f s}" and A' = "{s. z \<le> f s}"
in Always_Constrains_weaken, auto)
apply (drule Always_Int_I, assumption)
apply (force intro: Always_weaken)
done
lemma Always_Follows2:
"[| F \<in> Always {s. g s = g' s}; F \<in> f Fols g |] ==> F \<in> f Fols g'"
apply (simp add: Follows_def Increasing_def Stable_def, auto)
apply (erule_tac [3] Always_LeadsTo_weaken)
apply (erule_tac A = "{s. z \<le> g s}" and A' = "{s. z \<le> g s}"
in Always_Constrains_weaken, auto)
apply (drule Always_Int_I, assumption)
apply (force intro: Always_weaken)
done
subsection{*Union properties (with the subset ordering)*}
(*Can replace "Un" by any sup. But existing max only works for linorders.*)
lemma increasing_Un:
"[| F \<in> increasing f; F \<in> increasing g |]
==> F \<in> increasing (%s. (f s) \<union> (g s))"
apply (simp add: increasing_def stable_def constrains_def, auto)
apply (drule_tac x = "f xa" in spec)
apply (drule_tac x = "g xa" in spec)
apply (blast dest!: bspec)
done
lemma Increasing_Un:
"[| F \<in> Increasing f; F \<in> Increasing g |]
==> F \<in> Increasing (%s. (f s) \<union> (g s))"
apply (auto simp add: Increasing_def Stable_def Constrains_def
stable_def constrains_def)
apply (drule_tac x = "f xa" in spec)
apply (drule_tac x = "g xa" in spec)
apply (blast dest!: bspec)
done
lemma Always_Un:
"[| F \<in> Always {s. f' s \<le> f s}; F \<in> Always {s. g' s \<le> g s} |]
==> F \<in> Always {s. f' s \<union> g' s \<le> f s \<union> g s}"
by (simp add: Always_eq_includes_reachable, blast)
(*Lemma to re-use the argument that one variable increases (progress)
while the other variable doesn't decrease (safety)*)
lemma Follows_Un_lemma:
"[| F \<in> Increasing f; F \<in> Increasing g;
F \<in> Increasing g'; F \<in> Always {s. f' s \<le> f s};
\<forall>k. F \<in> {s. k \<le> f s} LeadsTo {s. k \<le> f' s} |]
==> F \<in> {s. k \<le> f s \<union> g s} LeadsTo {s. k \<le> f' s \<union> g s}"
apply (rule single_LeadsTo_I)
apply (drule_tac x = "f s" in IncreasingD)
apply (drule_tac x = "g s" in IncreasingD)
apply (rule LeadsTo_weaken)
apply (rule PSP_Stable)
apply (erule_tac x = "f s" in spec)
apply (erule Stable_Int, assumption, blast+)
done
lemma Follows_Un:
"[| F \<in> f' Fols f; F \<in> g' Fols g |]
==> F \<in> (%s. (f' s) \<union> (g' s)) Fols (%s. (f s) \<union> (g s))"
apply (simp add: Follows_def Increasing_Un Always_Un del: Un_subset_iff, auto)
apply (rule LeadsTo_Trans)
apply (blast intro: Follows_Un_lemma)
(*Weakening is used to exchange Un's arguments*)
apply (blast intro: Follows_Un_lemma [THEN LeadsTo_weaken])
done
subsection{*Multiset union properties (with the multiset ordering)*}
lemma increasing_union:
"[| F \<in> increasing f; F \<in> increasing g |]
==> F \<in> increasing (%s. (f s) + (g s :: ('a::order) multiset))"
apply (simp add: increasing_def stable_def constrains_def, auto)
apply (drule_tac x = "f xa" in spec)
apply (drule_tac x = "g xa" in spec)
apply (drule bspec, assumption)
apply (blast intro: union_le_mono order_trans)
done
lemma Increasing_union:
"[| F \<in> Increasing f; F \<in> Increasing g |]
==> F \<in> Increasing (%s. (f s) + (g s :: ('a::order) multiset))"
apply (auto simp add: Increasing_def Stable_def Constrains_def
stable_def constrains_def)
apply (drule_tac x = "f xa" in spec)
apply (drule_tac x = "g xa" in spec)
apply (drule bspec, assumption)
apply (blast intro: union_le_mono order_trans)
done
lemma Always_union:
"[| F \<in> Always {s. f' s \<le> f s}; F \<in> Always {s. g' s \<le> g s} |]
==> F \<in> Always {s. f' s + g' s \<le> f s + (g s :: ('a::order) multiset)}"
apply (simp add: Always_eq_includes_reachable)
apply (blast intro: union_le_mono)
done
(*Except the last line, IDENTICAL to the proof script for Follows_Un_lemma*)
lemma Follows_union_lemma:
"[| F \<in> Increasing f; F \<in> Increasing g;
F \<in> Increasing g'; F \<in> Always {s. f' s \<le> f s};
\<forall>k::('a::order) multiset.
F \<in> {s. k \<le> f s} LeadsTo {s. k \<le> f' s} |]
==> F \<in> {s. k \<le> f s + g s} LeadsTo {s. k \<le> f' s + g s}"
apply (rule single_LeadsTo_I)
apply (drule_tac x = "f s" in IncreasingD)
apply (drule_tac x = "g s" in IncreasingD)
apply (rule LeadsTo_weaken)
apply (rule PSP_Stable)
apply (erule_tac x = "f s" in spec)
apply (erule Stable_Int, assumption, blast)
apply (blast intro: union_le_mono order_trans)
done
(*The !! is there to influence to effect of permutative rewriting at the end*)
lemma Follows_union:
"!!g g' ::'b => ('a::order) multiset.
[| F \<in> f' Fols f; F \<in> g' Fols g |]
==> F \<in> (%s. (f' s) + (g' s)) Fols (%s. (f s) + (g s))"
apply (simp add: Follows_def)
apply (simp add: Increasing_union Always_union, auto)
apply (rule LeadsTo_Trans)
apply (blast intro: Follows_union_lemma)
(*now exchange union's arguments*)
apply (simp add: union_commute)
apply (blast intro: Follows_union_lemma)
done
lemma Follows_setsum:
"!!f ::['c,'b] => ('a::order) multiset.
[| \<forall>i \<in> I. F \<in> f' i Fols f i; finite I |]
==> F \<in> (%s. \<Sum>i \<in> I. f' i s) Fols (%s. \<Sum>i \<in> I. f i s)"
apply (erule rev_mp)
apply (erule finite_induct, simp)
apply (simp add: Follows_union)
done
(*Currently UNUSED, but possibly of interest*)
lemma Increasing_imp_Stable_pfixGe:
"F \<in> Increasing func ==> F \<in> Stable {s. h pfixGe (func s)}"
apply (simp add: Increasing_def Stable_def Constrains_def constrains_def)
apply (blast intro: trans_Ge [THEN trans_genPrefix, THEN transD]
prefix_imp_pfixGe)
done
(*Currently UNUSED, but possibly of interest*)
lemma LeadsTo_le_imp_pfixGe:
"\<forall>z. F \<in> {s. z \<le> f s} LeadsTo {s. z \<le> g s}
==> F \<in> {s. z pfixGe f s} LeadsTo {s. z pfixGe g s}"
apply (rule single_LeadsTo_I)
apply (drule_tac x = "f s" in spec)
apply (erule LeadsTo_weaken)
prefer 2
apply (blast intro: trans_Ge [THEN trans_genPrefix, THEN transD]
prefix_imp_pfixGe, blast)
done
end