consolidated various theorem names relating to Finite_Set.fold and List.fold combinators
(**** HOL examples -- process using Doc/tout HOL-eg.txt ****)
Pretty.setmargin 72; (*existing macros just allow this margin*)
print_depth 0;
(*** Conjunction rules ***)
val prems = goal HOL_Rule.thy "[| P; Q |] ==> P&Q";
by (resolve_tac [and_def RS ssubst] 1);
by (resolve_tac [allI] 1);
by (resolve_tac [impI] 1);
by (eresolve_tac [mp RS mp] 1);
by (REPEAT (resolve_tac prems 1));
val conjI = result();
val prems = goal HOL_Rule.thy "[| P & Q |] ==> P";
prths (prems RL [and_def RS subst]);
prths (prems RL [and_def RS subst] RL [spec] RL [mp]);
by (resolve_tac it 1);
by (REPEAT (ares_tac [impI] 1));
val conjunct1 = result();
(*** Cantor's Theorem: There is no surjection from a set to its powerset. ***)
goal Set.thy "~ ?S : range(f :: 'a=>'a set)";
by (resolve_tac [notI] 1);
by (eresolve_tac [rangeE] 1);
by (eresolve_tac [equalityCE] 1);
by (dresolve_tac [CollectD] 1);
by (contr_tac 1);
by (swap_res_tac [CollectI] 1);
by (assume_tac 1);
choplev 0;
by (best_tac (set_cs addSEs [equalityCE]) 1);
goal Set.thy "! f:: 'a=>'a set. ! x. ~ f(x) = ?S(f)";
by (REPEAT (resolve_tac [allI,notI] 1));
by (eresolve_tac [equalityCE] 1);
by (dresolve_tac [CollectD] 1);
by (contr_tac 1);
by (swap_res_tac [CollectI] 1);
by (assume_tac 1);
choplev 0;
by (best_tac (set_cs addSEs [equalityCE]) 1);
goal Set.thy "~ (? f:: 'a=>'a set. ! S. ? a. f(a) = S)";
by (best_tac (set_cs addSEs [equalityCE]) 1);
> val prems = goal HOL_Rule.thy "[| P; Q |] ==> P&Q";
Level 0
P & Q
1. P & Q
> by (resolve_tac [and_def RS ssubst] 1);
Level 1
P & Q
1. ! R. (P --> Q --> R) --> R
> by (resolve_tac [allI] 1);
Level 2
P & Q
1. !!R. (P --> Q --> R) --> R
> by (resolve_tac [impI] 1);
Level 3
P & Q
1. !!R. P --> Q --> R ==> R
> by (eresolve_tac [mp RS mp] 1);
Level 4
P & Q
1. !!R. P
2. !!R. Q
> by (REPEAT (resolve_tac prems 1));
Level 5
P & Q
No subgoals!
> val prems = goal HOL_Rule.thy "[| P & Q |] ==> P";
Level 0
P
1. P
> prths (prems RL [and_def RS subst]);
! R. (P --> Q --> R) --> R [P & Q]
P & Q [P & Q]
> prths (prems RL [and_def RS subst] RL [spec] RL [mp]);
P --> Q --> ?Q ==> ?Q [P & Q]
> by (resolve_tac it 1);
Level 1
P
1. P --> Q --> P
> by (REPEAT (ares_tac [impI] 1));
Level 2
P
No subgoals!
> goal Set.thy "~ ?S : range(f :: 'a=>'a set)";
Level 0
~?S : range(f)
1. ~?S : range(f)
> by (resolve_tac [notI] 1);
Level 1
~?S : range(f)
1. ?S : range(f) ==> False
> by (eresolve_tac [rangeE] 1);
Level 2
~?S : range(f)
1. !!x. ?S = f(x) ==> False
> by (eresolve_tac [equalityCE] 1);
Level 3
~?S : range(f)
1. !!x. [| ?c3(x) : ?S; ?c3(x) : f(x) |] ==> False
2. !!x. [| ~?c3(x) : ?S; ~?c3(x) : f(x) |] ==> False
> by (dresolve_tac [CollectD] 1);
Level 4
~{x. ?P7(x)} : range(f)
1. !!x. [| ?c3(x) : f(x); ?P7(?c3(x)) |] ==> False
2. !!x. [| ~?c3(x) : {x. ?P7(x)}; ~?c3(x) : f(x) |] ==> False
> by (contr_tac 1);
Level 5
~{x. ~x : f(x)} : range(f)
1. !!x. [| ~x : {x. ~x : f(x)}; ~x : f(x) |] ==> False
> by (swap_res_tac [CollectI] 1);
Level 6
~{x. ~x : f(x)} : range(f)
1. !!x. [| ~x : f(x); ~False |] ==> ~x : f(x)
> by (assume_tac 1);
Level 7
~{x. ~x : f(x)} : range(f)
No subgoals!
> choplev 0;
Level 0
~?S : range(f)
1. ~?S : range(f)
> by (best_tac (set_cs addSEs [equalityCE]) 1);
Level 1
~{x. ~x : f(x)} : range(f)
No subgoals!