(* Title: ZF/Datatype.thy
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1997 University of Cambridge
*)
section\<open>Datatype and CoDatatype Definitions\<close>
theory Datatype
imports Inductive Univ QUniv
keywords "datatype" "codatatype" :: thy_decl
begin
ML_file \<open>Tools/datatype_package.ML\<close>
ML \<open>
(*Typechecking rules for most datatypes involving univ*)
structure Data_Arg =
struct
val intrs =
[@{thm SigmaI}, @{thm InlI}, @{thm InrI},
@{thm Pair_in_univ}, @{thm Inl_in_univ}, @{thm Inr_in_univ},
@{thm zero_in_univ}, @{thm A_into_univ}, @{thm nat_into_univ}, @{thm UnCI}];
val elims = [make_elim @{thm InlD}, make_elim @{thm InrD}, (*for mutual recursion*)
@{thm SigmaE}, @{thm sumE}]; (*allows * and + in spec*)
end;
structure Data_Package =
Add_datatype_def_Fun
(structure Fp=Lfp and Pr=Standard_Prod and CP=Standard_CP
and Su=Standard_Sum
and Ind_Package = Ind_Package
and Datatype_Arg = Data_Arg
val coind = false);
(*Typechecking rules for most codatatypes involving quniv*)
structure CoData_Arg =
struct
val intrs =
[@{thm QSigmaI}, @{thm QInlI}, @{thm QInrI},
@{thm QPair_in_quniv}, @{thm QInl_in_quniv}, @{thm QInr_in_quniv},
@{thm zero_in_quniv}, @{thm A_into_quniv}, @{thm nat_into_quniv}, @{thm UnCI}];
val elims = [make_elim @{thm QInlD}, make_elim @{thm QInrD}, (*for mutual recursion*)
@{thm QSigmaE}, @{thm qsumE}]; (*allows * and + in spec*)
end;
structure CoData_Package =
Add_datatype_def_Fun
(structure Fp=Gfp and Pr=Quine_Prod and CP=Quine_CP
and Su=Quine_Sum
and Ind_Package = CoInd_Package
and Datatype_Arg = CoData_Arg
val coind = true);
(* Simproc for freeness reasoning: compare datatype constructors for equality *)
structure Data_Free:
sig
val trace: bool Config.T
val proc: Simplifier.proc
end =
struct
val trace = Attrib.setup_config_bool \<^binding>\<open>data_free_trace\<close> (K false);
fun mk_new ([],[]) = \<^Const>\<open>True\<close>
| mk_new (largs,rargs) =
Balanced_Tree.make FOLogic.mk_conj
(map FOLogic.mk_eq (ListPair.zip (largs,rargs)));
val datatype_ss = simpset_of \<^context>;
fun proc ctxt ct =
let
val old = Thm.term_of ct
val thy = Proof_Context.theory_of ctxt
val _ =
if Config.get ctxt trace then tracing ("data_free: OLD = " ^ Syntax.string_of_term ctxt old)
else ()
val (lhs,rhs) = FOLogic.dest_eq old
val (lhead, largs) = strip_comb lhs
and (rhead, rargs) = strip_comb rhs
val lname = dest_Const_name lhead handle TERM _ => raise Match;
val rname = dest_Const_name rhead handle TERM _ => raise Match;
val lcon_info = the (Symtab.lookup (ConstructorsData.get thy) lname)
handle Option.Option => raise Match;
val rcon_info = the (Symtab.lookup (ConstructorsData.get thy) rname)
handle Option.Option => raise Match;
val new =
if #big_rec_name lcon_info = #big_rec_name rcon_info
andalso not (null (#free_iffs lcon_info)) then
if lname = rname then mk_new (largs, rargs)
else \<^Const>\<open>False\<close>
else raise Match;
val _ =
if Config.get ctxt trace then tracing ("NEW = " ^ Syntax.string_of_term ctxt new)
else ();
val goal = Logic.mk_equals (old, new);
val thm = Goal.prove ctxt [] [] goal
(fn _ => resolve_tac ctxt @{thms iff_reflection} 1 THEN
simp_tac (put_simpset datatype_ss ctxt addsimps
(map (Thm.transfer thy) (#free_iffs lcon_info))) 1)
handle ERROR msg =>
(warning (msg ^ "\ndata_free simproc:\nfailed to prove " ^ Syntax.string_of_term ctxt goal);
raise Match)
in SOME thm end
handle Match => NONE;
end;
\<close>
simproc_setup data_free ("(x::i) = y") = \<open>fn _ => Data_Free.proc\<close>
end