(* Title: HOL/HOLCF/FOCUS/Buffer_adm.thy
Author: David von Oheimb, TU Muenchen
*)
section \<open>One-element buffer, proof of Buf_Eq_imp_AC by induction + admissibility\<close>
theory Buffer_adm
imports Buffer Stream_adm
begin
declare enat_0 [simp]
lemma BufAC_Asm_d2: "a\<leadsto>s:BufAC_Asm ==> ? d. a=Md d"
by (drule BufAC_Asm_unfold [THEN iffD1], auto)
lemma BufAC_Asm_d3:
"a\<leadsto>b\<leadsto>s:BufAC_Asm ==> ? d. a=Md d & b=\<bullet> & s:BufAC_Asm"
by (drule BufAC_Asm_unfold [THEN iffD1], auto)
lemma BufAC_Asm_F_def3:
"(s:BufAC_Asm_F A) = (s=<> |
(? d. ft\<cdot>s=Def(Md d)) & (rt\<cdot>s=<> | ft\<cdot>(rt\<cdot>s)=Def \<bullet> & rt\<cdot>(rt\<cdot>s):A))"
by (unfold BufAC_Asm_F_def, auto)
lemma cont_BufAC_Asm_F: "inf_continuous BufAC_Asm_F"
by (auto simp add: inf_continuous_def BufAC_Asm_F_def3)
lemma BufAC_Cmt_F_def3:
"((s,t):BufAC_Cmt_F C) = (!d x.
(s = <> --> t = <> ) &
(s = Md d\<leadsto><> --> t = <> ) &
(s = Md d\<leadsto>\<bullet>\<leadsto>x --> ft\<cdot>t = Def d & (x,rt\<cdot>t):C))"
apply (unfold BufAC_Cmt_F_def)
apply (subgoal_tac "!d x. (s = Md d\<leadsto>\<bullet>\<leadsto>x --> (? y. t = d\<leadsto>y & (x,y):C)) =
(s = Md d\<leadsto>\<bullet>\<leadsto>x --> ft\<cdot>t = Def d & (x,rt\<cdot>t):C)")
apply (simp)
apply (auto intro: surjectiv_scons [symmetric])
done
lemma cont_BufAC_Cmt_F: "inf_continuous BufAC_Cmt_F"
by (auto simp add: inf_continuous_def BufAC_Cmt_F_def3)
(**** adm_BufAC_Asm ***********************************************************)
lemma BufAC_Asm_F_stream_monoP: "stream_monoP BufAC_Asm_F"
apply (unfold BufAC_Asm_F_def stream_monoP_def)
apply (rule_tac x="{x. (? d. x = Md d\<leadsto>\<bullet>\<leadsto><>)}" in exI)
apply (rule_tac x="Suc (Suc 0)" in exI)
apply (clarsimp)
done
lemma adm_BufAC_Asm: "adm (%x. x:BufAC_Asm)"
apply (unfold BufAC_Asm_def)
apply (rule cont_BufAC_Asm_F [THEN BufAC_Asm_F_stream_monoP [THEN fstream_gfp_admI]])
done
(**** adm_non_BufAC_Asm *******************************************************)
lemma BufAC_Asm_F_stream_antiP: "stream_antiP BufAC_Asm_F"
apply (unfold stream_antiP_def BufAC_Asm_F_def)
apply (intro strip)
apply (rule_tac x="{x. (? d. x = Md d\<leadsto>\<bullet>\<leadsto><>)}" in exI)
apply (rule_tac x="Suc (Suc 0)" in exI)
apply (rule conjI)
prefer 2
apply ( intro strip)
apply ( drule slen_mono)
apply ( drule (1) order_trans)
apply (force)+
done
lemma adm_non_BufAC_Asm: "adm (%u. u~:BufAC_Asm)"
apply (unfold BufAC_Asm_def)
apply (rule cont_BufAC_Asm_F [THEN BufAC_Asm_F_stream_antiP [THEN fstream_non_gfp_admI]])
done
(**** adm_BufAC ***************************************************************)
(*adm_non_BufAC_Asm*)
lemma BufAC_Asm_cong [rule_format]: "!f ff. f:BufEq --> ff:BufEq --> s:BufAC_Asm --> f\<cdot>s = ff\<cdot>s"
apply (rule fstream_ind2)
apply (simp add: adm_non_BufAC_Asm)
apply (force dest: Buf_f_empty)
apply (force dest!: BufAC_Asm_d2
dest: Buf_f_d elim: ssubst)
apply (safe dest!: BufAC_Asm_d3)
apply (drule Buf_f_d_req)+
apply (fast elim: ssubst)
done
(*adm_non_BufAC_Asm,BufAC_Asm_cong*)
lemma BufAC_Cmt_d_req:
"!!X. [|f:BufEq; s:BufAC_Asm; (s, f\<cdot>s):BufAC_Cmt|] ==> (a\<leadsto>b\<leadsto>s, f\<cdot>(a\<leadsto>b\<leadsto>s)):BufAC_Cmt"
apply (rule BufAC_Cmt_unfold [THEN iffD2])
apply (intro strip)
apply (frule Buf_f_d_req)
apply (auto elim: BufAC_Asm_cong [THEN subst])
done
(*adm_BufAC_Asm*)
lemma BufAC_Asm_antiton: "antitonP BufAC_Asm"
apply (rule antitonPI)
apply (rule allI)
apply (rule fstream_ind2)
apply ( rule adm_lemmas)+
apply ( rule cont_id)
apply ( rule adm_BufAC_Asm)
apply ( safe)
apply ( rule BufAC_Asm_empty)
apply ( force dest!: fstream_prefix
dest: BufAC_Asm_d2 intro: BufAC_Asm_d)
apply ( force dest!: fstream_prefix
dest: BufAC_Asm_d3 intro!: BufAC_Asm_d_req)
done
(*adm_BufAC_Asm,BufAC_Asm_antiton,adm_non_BufAC_Asm,BufAC_Asm_cong*)
lemma BufAC_Cmt_2stream_monoP: "f:BufEq ==> ? l. !i x s. s:BufAC_Asm --> x << s --> enat (l i) < #x -->
(x,f\<cdot>x):(BufAC_Cmt_F ^^ i) top -->
(s,f\<cdot>s):(BufAC_Cmt_F ^^ i) top"
apply (rule_tac x="%i. 2*i" in exI)
apply (rule allI)
apply (induct_tac "i")
apply ( simp)
apply (simp add: add.commute)
apply (intro strip)
apply (subst BufAC_Cmt_F_def3)
apply (drule_tac P="%x. x" in BufAC_Cmt_F_def3 [THEN subst])
apply safe
apply ( erule Buf_f_empty)
apply ( erule Buf_f_d)
apply ( drule Buf_f_d_req)
apply ( safe, erule ssubst, simp)
apply clarsimp
apply (rename_tac i d xa ya t)
(*
1. \<And>i d xa ya t.
\<lbrakk>f \<in> BufEq;
\<forall>x s. s \<in> BufAC_Asm \<longrightarrow>
x \<sqsubseteq> s \<longrightarrow>
enat (2 * i) < #x \<longrightarrow>
(x, f\<cdot>x) \<in> down_iterate BufAC_Cmt_F i \<longrightarrow>
(s, f\<cdot>s) \<in> down_iterate BufAC_Cmt_F i;
Md d\<leadsto>\<bullet>\<leadsto>xa \<in> BufAC_Asm; enat (2 * i) < #ya; f\<cdot>(Md d\<leadsto>\<bullet>\<leadsto>ya) = d\<leadsto>t;
(ya, t) \<in> down_iterate BufAC_Cmt_F i; ya \<sqsubseteq> xa\<rbrakk>
\<Longrightarrow> (xa, rt\<cdot>(f\<cdot>(Md d\<leadsto>\<bullet>\<leadsto>xa))) \<in> down_iterate BufAC_Cmt_F i
*)
apply (rotate_tac 2)
apply (drule BufAC_Asm_prefix2)
apply (frule Buf_f_d_req, erule exE, erule conjE, rotate_tac -1, erule ssubst)
apply (frule Buf_f_d_req, erule exE, erule conjE)
apply ( subgoal_tac "f\<cdot>(Md d\<leadsto>\<bullet>\<leadsto>ya) = d\<leadsto>ffa\<cdot>ya")
prefer 2
apply ( assumption)
apply ( rotate_tac -1)
apply ( simp)
apply (erule subst)
(*
1. \<And>i d xa ya t ff ffa.
\<lbrakk>f\<cdot>(Md d\<leadsto>\<bullet>\<leadsto>ya) = d\<leadsto>ffa\<cdot>ya; enat (2 * i) < #ya;
(ya, ffa\<cdot>ya) \<in> down_iterate BufAC_Cmt_F i; ya \<sqsubseteq> xa; f \<in> BufEq;
\<forall>x s. s \<in> BufAC_Asm \<longrightarrow>
x \<sqsubseteq> s \<longrightarrow>
enat (2 * i) < #x \<longrightarrow>
(x, f\<cdot>x) \<in> down_iterate BufAC_Cmt_F i \<longrightarrow>
(s, f\<cdot>s) \<in> down_iterate BufAC_Cmt_F i;
xa \<in> BufAC_Asm; ff \<in> BufEq; ffa \<in> BufEq\<rbrakk>
\<Longrightarrow> (xa, ff\<cdot>xa) \<in> down_iterate BufAC_Cmt_F i
*)
apply (drule spec, drule spec, drule (1) mp)
apply (drule (1) mp)
apply (drule (1) mp)
apply (erule impE)
apply ( subst BufAC_Asm_cong, assumption)
prefer 3 apply assumption
apply assumption
apply ( erule (1) BufAC_Asm_antiton [THEN antitonPD])
apply (subst BufAC_Asm_cong, assumption)
prefer 3 apply assumption
apply assumption
apply assumption
done
lemma BufAC_Cmt_iterate_all: "(x\<in>BufAC_Cmt) = (\<forall>n. x\<in>(BufAC_Cmt_F ^^ n) top)"
apply (unfold BufAC_Cmt_def)
apply (subst cont_BufAC_Cmt_F [THEN inf_continuous_gfp])
apply (fast)
done
(*adm_BufAC_Asm,BufAC_Asm_antiton,adm_non_BufAC_Asm,BufAC_Asm_cong,
BufAC_Cmt_2stream_monoP*)
lemma adm_BufAC: "f:BufEq ==> adm (%s. s:BufAC_Asm --> (s, f\<cdot>s):BufAC_Cmt)"
apply (rule flatstream_admI)
apply (subst BufAC_Cmt_iterate_all)
apply (drule BufAC_Cmt_2stream_monoP)
apply safe
apply (drule spec, erule exE)
apply (drule spec, erule impE)
apply (erule BufAC_Asm_antiton [THEN antitonPD])
apply (erule is_ub_thelub)
apply (tactic "smp_tac @{context} 3 1")
apply (drule is_ub_thelub)
apply (drule (1) mp)
apply (drule (1) mp)
apply (erule mp)
apply (drule BufAC_Cmt_iterate_all [THEN iffD1])
apply (erule spec)
done
(**** Buf_Eq_imp_AC by induction **********************************************)
(*adm_BufAC_Asm,BufAC_Asm_antiton,adm_non_BufAC_Asm,BufAC_Asm_cong,
BufAC_Cmt_2stream_monoP,adm_BufAC,BufAC_Cmt_d_req*)
lemma Buf_Eq_imp_AC: "BufEq <= BufAC"
apply (unfold BufAC_def)
apply (rule subsetI)
apply (simp)
apply (rule allI)
apply (rule fstream_ind2)
back
apply ( erule adm_BufAC)
apply ( safe)
apply ( erule BufAC_Cmt_empty)
apply ( erule BufAC_Cmt_d)
apply ( drule BufAC_Asm_prefix2)
apply ( simp)
apply (fast intro: BufAC_Cmt_d_req BufAC_Asm_prefix2)
done
(**** new approach for admissibility, reduces itself to absurdity *************)
lemma adm_BufAC_Asm': "adm (\<lambda>x. x\<in>BufAC_Asm)"
apply (rule def_gfp_admI)
apply (rule BufAC_Asm_def [THEN eq_reflection])
apply (safe)
apply (unfold BufAC_Asm_F_def)
apply (safe)
apply (erule contrapos_np)
apply (drule fstream_exhaust_eq [THEN iffD1])
apply (clarsimp)
apply (drule (1) fstream_lub_lemma)
apply (clarify)
apply (erule_tac x="j" in all_dupE)
apply (simp)
apply (drule BufAC_Asm_d2)
apply (clarify)
apply (simp)
apply (rule disjCI)
apply (erule contrapos_np)
apply (drule fstream_exhaust_eq [THEN iffD1])
apply (clarsimp)
apply (drule (1) fstream_lub_lemma)
apply (clarsimp)
apply (simp only: ex_simps [symmetric] all_simps [symmetric])
apply (rule_tac x="Xa" in exI)
apply (rule allI)
apply (rotate_tac -1)
apply (erule_tac x="i" in allE)
apply (clarsimp)
apply (erule_tac x="jb" in allE)
apply (clarsimp)
apply (erule_tac x="jc" in allE)
apply (clarsimp dest!: BufAC_Asm_d3)
done
lemma adm_non_BufAC_Asm': "adm (\<lambda>u. u \<notin> BufAC_Asm)" (* uses antitonP *)
apply (rule def_gfp_adm_nonP)
apply (rule BufAC_Asm_def [THEN eq_reflection])
apply (unfold BufAC_Asm_F_def)
apply (safe)
apply (erule contrapos_np)
apply (drule fstream_exhaust_eq [THEN iffD1])
apply (clarsimp)
apply (frule fstream_prefix)
apply (clarsimp)
apply (frule BufAC_Asm_d2)
apply (clarsimp)
apply (rotate_tac -1)
apply (erule contrapos_pp)
apply (drule fstream_exhaust_eq [THEN iffD1])
apply (clarsimp)
apply (frule fstream_prefix)
apply (clarsimp)
apply (frule BufAC_Asm_d3)
apply (force)
done
lemma adm_BufAC': "f \<in> BufEq \<Longrightarrow> adm (\<lambda>u. u \<in> BufAC_Asm \<longrightarrow> (u, f\<cdot>u) \<in> BufAC_Cmt)"
apply (rule triv_admI)
apply (clarify)
apply (erule (1) Buf_Eq_imp_AC_lemma)
(* this is what we originally aimed to show, using admissibilty :-( *)
done
end