(* Title: HOL/Hoare/Heap.thy
Author: Tobias Nipkow
Copyright 2002 TUM
Pointers, heaps and heap abstractions.
See the paper by Mehta and Nipkow.
*)
theory Heap imports Main begin
subsection "References"
datatype 'a ref = Null | Ref 'a
lemma not_Null_eq [iff]: "(x ~= Null) = (EX y. x = Ref y)"
by (induct x) auto
lemma not_Ref_eq [iff]: "(ALL y. x ~= Ref y) = (x = Null)"
by (induct x) auto
primrec addr :: "'a ref \<Rightarrow> 'a" where
"addr (Ref a) = a"
section "The heap"
subsection "Paths in the heap"
primrec Path :: "('a \<Rightarrow> 'a ref) \<Rightarrow> 'a ref \<Rightarrow> 'a list \<Rightarrow> 'a ref \<Rightarrow> bool" where
"Path h x [] y \<longleftrightarrow> x = y"
| "Path h x (a#as) y \<longleftrightarrow> x = Ref a \<and> Path h (h a) as y"
lemma [iff]: "Path h Null xs y = (xs = [] \<and> y = Null)"
apply(case_tac xs)
apply fastforce
apply fastforce
done
lemma [simp]: "Path h (Ref a) as z =
(as = [] \<and> z = Ref a \<or> (\<exists>bs. as = a#bs \<and> Path h (h a) bs z))"
apply(case_tac as)
apply fastforce
apply fastforce
done
lemma [simp]: "\<And>x. Path f x (as@bs) z = (\<exists>y. Path f x as y \<and> Path f y bs z)"
by(induct as, simp+)
lemma Path_upd[simp]:
"\<And>x. u \<notin> set as \<Longrightarrow> Path (f(u := v)) x as y = Path f x as y"
by(induct as, simp, simp add:eq_sym_conv)
lemma Path_snoc:
"Path (f(a := q)) p as (Ref a) \<Longrightarrow> Path (f(a := q)) p (as @ [a]) q"
by simp
subsection "Non-repeating paths"
definition distPath :: "('a \<Rightarrow> 'a ref) \<Rightarrow> 'a ref \<Rightarrow> 'a list \<Rightarrow> 'a ref \<Rightarrow> bool"
where "distPath h x as y \<longleftrightarrow> Path h x as y \<and> distinct as"
text\<open>The term @{term"distPath h x as y"} expresses the fact that a
non-repeating path @{term as} connects location @{term x} to location
@{term y} by means of the @{term h} field. In the case where \<open>x
= y\<close>, and there is a cycle from @{term x} to itself, @{term as} can
be both @{term "[]"} and the non-repeating list of nodes in the
cycle.\<close>
lemma neq_dP: "p \<noteq> q \<Longrightarrow> Path h p Ps q \<Longrightarrow> distinct Ps \<Longrightarrow>
EX a Qs. p = Ref a & Ps = a#Qs & a \<notin> set Qs"
by (case_tac Ps, auto)
lemma neq_dP_disp: "\<lbrakk> p \<noteq> q; distPath h p Ps q \<rbrakk> \<Longrightarrow>
EX a Qs. p = Ref a \<and> Ps = a#Qs \<and> a \<notin> set Qs"
apply (simp only:distPath_def)
by (case_tac Ps, auto)
subsection "Lists on the heap"
subsubsection "Relational abstraction"
definition List :: "('a \<Rightarrow> 'a ref) \<Rightarrow> 'a ref \<Rightarrow> 'a list \<Rightarrow> bool"
where "List h x as = Path h x as Null"
lemma [simp]: "List h x [] = (x = Null)"
by(simp add:List_def)
lemma [simp]: "List h x (a#as) = (x = Ref a \<and> List h (h a) as)"
by(simp add:List_def)
lemma [simp]: "List h Null as = (as = [])"
by(case_tac as, simp_all)
lemma List_Ref[simp]: "List h (Ref a) as = (\<exists>bs. as = a#bs \<and> List h (h a) bs)"
by(case_tac as, simp_all, fast)
theorem notin_List_update[simp]:
"\<And>x. a \<notin> set as \<Longrightarrow> List (h(a := y)) x as = List h x as"
apply(induct as)
apply simp
apply(clarsimp simp add:fun_upd_apply)
done
lemma List_unique: "\<And>x bs. List h x as \<Longrightarrow> List h x bs \<Longrightarrow> as = bs"
by(induct as, simp, clarsimp)
lemma List_unique1: "List h p as \<Longrightarrow> \<exists>!as. List h p as"
by(blast intro:List_unique)
lemma List_app: "\<And>x. List h x (as@bs) = (\<exists>y. Path h x as y \<and> List h y bs)"
by(induct as, simp, clarsimp)
lemma List_hd_not_in_tl[simp]: "List h (h a) as \<Longrightarrow> a \<notin> set as"
apply (clarsimp simp add:in_set_conv_decomp)
apply(frule List_app[THEN iffD1])
apply(fastforce dest: List_unique)
done
lemma List_distinct[simp]: "\<And>x. List h x as \<Longrightarrow> distinct as"
apply(induct as, simp)
apply(fastforce dest:List_hd_not_in_tl)
done
lemma Path_is_List:
"\<lbrakk>Path h b Ps (Ref a); a \<notin> set Ps\<rbrakk> \<Longrightarrow> List (h(a := Null)) b (Ps @ [a])"
apply (induct Ps arbitrary: b)
apply (auto simp add:fun_upd_apply)
done
subsection "Functional abstraction"
definition islist :: "('a \<Rightarrow> 'a ref) \<Rightarrow> 'a ref \<Rightarrow> bool"
where "islist h p \<longleftrightarrow> (\<exists>as. List h p as)"
definition list :: "('a \<Rightarrow> 'a ref) \<Rightarrow> 'a ref \<Rightarrow> 'a list"
where "list h p = (SOME as. List h p as)"
lemma List_conv_islist_list: "List h p as = (islist h p \<and> as = list h p)"
apply(simp add:islist_def list_def)
apply(rule iffI)
apply(rule conjI)
apply blast
apply(subst some1_equality)
apply(erule List_unique1)
apply assumption
apply(rule refl)
apply simp
apply(rule someI_ex)
apply fast
done
lemma [simp]: "islist h Null"
by(simp add:islist_def)
lemma [simp]: "islist h (Ref a) = islist h (h a)"
by(simp add:islist_def)
lemma [simp]: "list h Null = []"
by(simp add:list_def)
lemma list_Ref_conv[simp]:
"islist h (h a) \<Longrightarrow> list h (Ref a) = a # list h (h a)"
apply(insert List_Ref[of h])
apply(fastforce simp:List_conv_islist_list)
done
lemma [simp]: "islist h (h a) \<Longrightarrow> a \<notin> set(list h (h a))"
apply(insert List_hd_not_in_tl[of h])
apply(simp add:List_conv_islist_list)
done
lemma list_upd_conv[simp]:
"islist h p \<Longrightarrow> y \<notin> set(list h p) \<Longrightarrow> list (h(y := q)) p = list h p"
apply(drule notin_List_update[of _ _ h q p])
apply(simp add:List_conv_islist_list)
done
lemma islist_upd[simp]:
"islist h p \<Longrightarrow> y \<notin> set(list h p) \<Longrightarrow> islist (h(y := q)) p"
apply(frule notin_List_update[of _ _ h q p])
apply(simp add:List_conv_islist_list)
done
end