(* Title: FOLP/FOLP.thy
ID: $Id$
Author: Martin D Coen, Cambridge University Computer Laboratory
Copyright 1992 University of Cambridge
*)
header {* Classical First-Order Logic with Proofs *}
theory FOLP
imports IFOLP
uses
("FOLP_lemmas.ML") ("hypsubst.ML") ("classical.ML")
("simp.ML") ("intprover.ML") ("simpdata.ML")
begin
consts
cla :: "[p=>p]=>p"
axioms
classical: "(!!x. x:~P ==> f(x):P) ==> cla(f):P"
ML {* use_legacy_bindings (the_context ()) *}
use "FOLP_lemmas.ML"
use "hypsubst.ML"
use "classical.ML" (* Patched 'cos matching won't instantiate proof *)
use "simp.ML" (* Patched 'cos matching won't instantiate proof *)
ML {*
(*** Applying HypsubstFun to generate hyp_subst_tac ***)
structure Hypsubst_Data =
struct
(*Take apart an equality judgement; otherwise raise Match!*)
fun dest_eq (Const("Proof",_) $ (Const("op =",_) $ t $ u) $ _) = (t,u);
val imp_intr = impI
(*etac rev_cut_eq moves an equality to be the last premise. *)
val rev_cut_eq = prove_goal @{theory}
"[| p:a=b; !!x. x:a=b ==> f(x):R |] ==> ?p:R"
(fn prems => [ REPEAT(resolve_tac prems 1) ]);
val rev_mp = rev_mp
val subst = subst
val sym = sym
val thin_refl = prove_goal @{theory} "!!X. [|p:x=x; PROP W|] ==> PROP W" (K [atac 1]);
end;
structure Hypsubst = HypsubstFun(Hypsubst_Data);
open Hypsubst;
*}
use "intprover.ML"
ML {*
(*** Applying ClassicalFun to create a classical prover ***)
structure Classical_Data =
struct
val sizef = size_of_thm
val mp = mp
val not_elim = notE
val swap = swap
val hyp_subst_tacs=[hyp_subst_tac]
end;
structure Cla = ClassicalFun(Classical_Data);
open Cla;
(*Propositional rules
-- iffCE might seem better, but in the examples in ex/cla
run about 7% slower than with iffE*)
val prop_cs = empty_cs addSIs [refl,TrueI,conjI,disjCI,impI,notI,iffI]
addSEs [conjE,disjE,impCE,FalseE,iffE];
(*Quantifier rules*)
val FOLP_cs = prop_cs addSIs [allI] addIs [exI,ex1I]
addSEs [exE,ex1E] addEs [allE];
val FOLP_dup_cs = prop_cs addSIs [allI] addIs [exCI,ex1I]
addSEs [exE,ex1E] addEs [all_dupE];
*}
use "simpdata.ML"
end