(* Title: HOLCF/Porder.thy
Author: Franz Regensburger and Brian Huffman
*)
header {* Partial orders *}
theory Porder
imports Main
begin
subsection {* Type class for partial orders *}
class sq_ord =
fixes sq_le :: "'a \<Rightarrow> 'a \<Rightarrow> bool"
notation
sq_le (infixl "<<" 55)
notation (xsymbols)
sq_le (infixl "\<sqsubseteq>" 55)
class po = sq_ord +
assumes refl_less [iff]: "x \<sqsubseteq> x"
assumes trans_less: "\<lbrakk>x \<sqsubseteq> y; y \<sqsubseteq> z\<rbrakk> \<Longrightarrow> x \<sqsubseteq> z"
assumes antisym_less: "\<lbrakk>x \<sqsubseteq> y; y \<sqsubseteq> x\<rbrakk> \<Longrightarrow> x = y"
text {* minimal fixes least element *}
lemma minimal2UU[OF allI] : "\<forall>x::'a::po. uu \<sqsubseteq> x \<Longrightarrow> uu = (THE u. \<forall>y. u \<sqsubseteq> y)"
by (blast intro: theI2 antisym_less)
text {* the reverse law of anti-symmetry of @{term "op <<"} *}
lemma antisym_less_inverse: "(x::'a::po) = y \<Longrightarrow> x \<sqsubseteq> y \<and> y \<sqsubseteq> x"
by simp
lemma box_less: "\<lbrakk>(a::'a::po) \<sqsubseteq> b; c \<sqsubseteq> a; b \<sqsubseteq> d\<rbrakk> \<Longrightarrow> c \<sqsubseteq> d"
by (rule trans_less [OF trans_less])
lemma po_eq_conv: "((x::'a::po) = y) = (x \<sqsubseteq> y \<and> y \<sqsubseteq> x)"
by (fast elim!: antisym_less_inverse intro!: antisym_less)
lemma rev_trans_less: "\<lbrakk>(y::'a::po) \<sqsubseteq> z; x \<sqsubseteq> y\<rbrakk> \<Longrightarrow> x \<sqsubseteq> z"
by (rule trans_less)
lemma sq_ord_less_eq_trans: "\<lbrakk>a \<sqsubseteq> b; b = c\<rbrakk> \<Longrightarrow> a \<sqsubseteq> c"
by (rule subst)
lemma sq_ord_eq_less_trans: "\<lbrakk>a = b; b \<sqsubseteq> c\<rbrakk> \<Longrightarrow> a \<sqsubseteq> c"
by (rule ssubst)
lemmas HOLCF_trans_rules [trans] =
trans_less
antisym_less
sq_ord_less_eq_trans
sq_ord_eq_less_trans
subsection {* Upper bounds *}
definition
is_ub :: "['a set, 'a::po] \<Rightarrow> bool" (infixl "<|" 55) where
"(S <| x) = (\<forall>y. y \<in> S \<longrightarrow> y \<sqsubseteq> x)"
lemma is_ubI: "(\<And>x. x \<in> S \<Longrightarrow> x \<sqsubseteq> u) \<Longrightarrow> S <| u"
by (simp add: is_ub_def)
lemma is_ubD: "\<lbrakk>S <| u; x \<in> S\<rbrakk> \<Longrightarrow> x \<sqsubseteq> u"
by (simp add: is_ub_def)
lemma ub_imageI: "(\<And>x. x \<in> S \<Longrightarrow> f x \<sqsubseteq> u) \<Longrightarrow> (\<lambda>x. f x) ` S <| u"
unfolding is_ub_def by fast
lemma ub_imageD: "\<lbrakk>f ` S <| u; x \<in> S\<rbrakk> \<Longrightarrow> f x \<sqsubseteq> u"
unfolding is_ub_def by fast
lemma ub_rangeI: "(\<And>i. S i \<sqsubseteq> x) \<Longrightarrow> range S <| x"
unfolding is_ub_def by fast
lemma ub_rangeD: "range S <| x \<Longrightarrow> S i \<sqsubseteq> x"
unfolding is_ub_def by fast
lemma is_ub_empty [simp]: "{} <| u"
unfolding is_ub_def by fast
lemma is_ub_insert [simp]: "(insert x A) <| y = (x \<sqsubseteq> y \<and> A <| y)"
unfolding is_ub_def by fast
lemma is_ub_upward: "\<lbrakk>S <| x; x \<sqsubseteq> y\<rbrakk> \<Longrightarrow> S <| y"
unfolding is_ub_def by (fast intro: trans_less)
subsection {* Least upper bounds *}
definition
is_lub :: "['a set, 'a::po] \<Rightarrow> bool" (infixl "<<|" 55) where
"(S <<| x) = (S <| x \<and> (\<forall>u. S <| u \<longrightarrow> x \<sqsubseteq> u))"
definition
lub :: "'a set \<Rightarrow> 'a::po" where
"lub S = (THE x. S <<| x)"
syntax
"_BLub" :: "[pttrn, 'a set, 'b] \<Rightarrow> 'b" ("(3LUB _:_./ _)" [0,0, 10] 10)
syntax (xsymbols)
"_BLub" :: "[pttrn, 'a set, 'b] \<Rightarrow> 'b" ("(3\<Squnion>_\<in>_./ _)" [0,0, 10] 10)
translations
"LUB x:A. t" == "CONST lub ((%x. t) ` A)"
abbreviation
Lub (binder "LUB " 10) where
"LUB n. t n == lub (range t)"
notation (xsymbols)
Lub (binder "\<Squnion> " 10)
text {* access to some definition as inference rule *}
lemma is_lubD1: "S <<| x \<Longrightarrow> S <| x"
unfolding is_lub_def by fast
lemma is_lub_lub: "\<lbrakk>S <<| x; S <| u\<rbrakk> \<Longrightarrow> x \<sqsubseteq> u"
unfolding is_lub_def by fast
lemma is_lubI: "\<lbrakk>S <| x; \<And>u. S <| u \<Longrightarrow> x \<sqsubseteq> u\<rbrakk> \<Longrightarrow> S <<| x"
unfolding is_lub_def by fast
text {* lubs are unique *}
lemma unique_lub: "\<lbrakk>S <<| x; S <<| y\<rbrakk> \<Longrightarrow> x = y"
apply (unfold is_lub_def is_ub_def)
apply (blast intro: antisym_less)
done
text {* technical lemmas about @{term lub} and @{term is_lub} *}
lemma lubI: "M <<| x \<Longrightarrow> M <<| lub M"
apply (unfold lub_def)
apply (rule theI)
apply assumption
apply (erule (1) unique_lub)
done
lemma thelubI: "M <<| l \<Longrightarrow> lub M = l"
by (rule unique_lub [OF lubI])
lemma is_lub_singleton: "{x} <<| x"
by (simp add: is_lub_def)
lemma lub_singleton [simp]: "lub {x} = x"
by (rule thelubI [OF is_lub_singleton])
lemma is_lub_bin: "x \<sqsubseteq> y \<Longrightarrow> {x, y} <<| y"
by (simp add: is_lub_def)
lemma lub_bin: "x \<sqsubseteq> y \<Longrightarrow> lub {x, y} = y"
by (rule is_lub_bin [THEN thelubI])
lemma is_lub_maximal: "\<lbrakk>S <| x; x \<in> S\<rbrakk> \<Longrightarrow> S <<| x"
by (erule is_lubI, erule (1) is_ubD)
lemma lub_maximal: "\<lbrakk>S <| x; x \<in> S\<rbrakk> \<Longrightarrow> lub S = x"
by (rule is_lub_maximal [THEN thelubI])
subsection {* Countable chains *}
definition
-- {* Here we use countable chains and I prefer to code them as functions! *}
chain :: "(nat \<Rightarrow> 'a::po) \<Rightarrow> bool" where
"chain Y = (\<forall>i. Y i \<sqsubseteq> Y (Suc i))"
lemma chainI: "(\<And>i. Y i \<sqsubseteq> Y (Suc i)) \<Longrightarrow> chain Y"
unfolding chain_def by fast
lemma chainE: "chain Y \<Longrightarrow> Y i \<sqsubseteq> Y (Suc i)"
unfolding chain_def by fast
text {* chains are monotone functions *}
lemma chain_mono_less: "\<lbrakk>chain Y; i < j\<rbrakk> \<Longrightarrow> Y i \<sqsubseteq> Y j"
by (erule less_Suc_induct, erule chainE, erule trans_less)
lemma chain_mono: "\<lbrakk>chain Y; i \<le> j\<rbrakk> \<Longrightarrow> Y i \<sqsubseteq> Y j"
by (cases "i = j", simp, simp add: chain_mono_less)
lemma chain_shift: "chain Y \<Longrightarrow> chain (\<lambda>i. Y (i + j))"
by (rule chainI, simp, erule chainE)
text {* technical lemmas about (least) upper bounds of chains *}
lemma is_ub_lub: "range S <<| x \<Longrightarrow> S i \<sqsubseteq> x"
by (rule is_lubD1 [THEN ub_rangeD])
lemma is_ub_range_shift:
"chain S \<Longrightarrow> range (\<lambda>i. S (i + j)) <| x = range S <| x"
apply (rule iffI)
apply (rule ub_rangeI)
apply (rule_tac y="S (i + j)" in trans_less)
apply (erule chain_mono)
apply (rule le_add1)
apply (erule ub_rangeD)
apply (rule ub_rangeI)
apply (erule ub_rangeD)
done
lemma is_lub_range_shift:
"chain S \<Longrightarrow> range (\<lambda>i. S (i + j)) <<| x = range S <<| x"
by (simp add: is_lub_def is_ub_range_shift)
text {* the lub of a constant chain is the constant *}
lemma chain_const [simp]: "chain (\<lambda>i. c)"
by (simp add: chainI)
lemma lub_const: "range (\<lambda>x. c) <<| c"
by (blast dest: ub_rangeD intro: is_lubI ub_rangeI)
lemma thelub_const [simp]: "(\<Squnion>i. c) = c"
by (rule lub_const [THEN thelubI])
subsection {* Finite chains *}
definition
-- {* finite chains, needed for monotony of continuous functions *}
max_in_chain :: "[nat, nat \<Rightarrow> 'a::po] \<Rightarrow> bool" where
"max_in_chain i C = (\<forall>j. i \<le> j \<longrightarrow> C i = C j)"
definition
finite_chain :: "(nat \<Rightarrow> 'a::po) \<Rightarrow> bool" where
"finite_chain C = (chain C \<and> (\<exists>i. max_in_chain i C))"
text {* results about finite chains *}
lemma max_in_chainI: "(\<And>j. i \<le> j \<Longrightarrow> Y i = Y j) \<Longrightarrow> max_in_chain i Y"
unfolding max_in_chain_def by fast
lemma max_in_chainD: "\<lbrakk>max_in_chain i Y; i \<le> j\<rbrakk> \<Longrightarrow> Y i = Y j"
unfolding max_in_chain_def by fast
lemma finite_chainI:
"\<lbrakk>chain C; max_in_chain i C\<rbrakk> \<Longrightarrow> finite_chain C"
unfolding finite_chain_def by fast
lemma finite_chainE:
"\<lbrakk>finite_chain C; \<And>i. \<lbrakk>chain C; max_in_chain i C\<rbrakk> \<Longrightarrow> R\<rbrakk> \<Longrightarrow> R"
unfolding finite_chain_def by fast
lemma lub_finch1: "\<lbrakk>chain C; max_in_chain i C\<rbrakk> \<Longrightarrow> range C <<| C i"
apply (rule is_lubI)
apply (rule ub_rangeI, rename_tac j)
apply (rule_tac x=i and y=j in linorder_le_cases)
apply (drule (1) max_in_chainD, simp)
apply (erule (1) chain_mono)
apply (erule ub_rangeD)
done
lemma lub_finch2:
"finite_chain C \<Longrightarrow> range C <<| C (LEAST i. max_in_chain i C)"
apply (erule finite_chainE)
apply (erule LeastI2 [where Q="\<lambda>i. range C <<| C i"])
apply (erule (1) lub_finch1)
done
lemma finch_imp_finite_range: "finite_chain Y \<Longrightarrow> finite (range Y)"
apply (erule finite_chainE)
apply (rule_tac B="Y ` {..i}" in finite_subset)
apply (rule subsetI)
apply (erule rangeE, rename_tac j)
apply (rule_tac x=i and y=j in linorder_le_cases)
apply (subgoal_tac "Y j = Y i", simp)
apply (simp add: max_in_chain_def)
apply simp
apply simp
done
lemma finite_range_has_max:
fixes f :: "nat \<Rightarrow> 'a" and r :: "'a \<Rightarrow> 'a \<Rightarrow> bool"
assumes mono: "\<And>i j. i \<le> j \<Longrightarrow> r (f i) (f j)"
assumes finite_range: "finite (range f)"
shows "\<exists>k. \<forall>i. r (f i) (f k)"
proof (intro exI allI)
fix i :: nat
let ?j = "LEAST k. f k = f i"
let ?k = "Max ((\<lambda>x. LEAST k. f k = x) ` range f)"
have "?j \<le> ?k"
proof (rule Max_ge)
show "finite ((\<lambda>x. LEAST k. f k = x) ` range f)"
using finite_range by (rule finite_imageI)
show "?j \<in> (\<lambda>x. LEAST k. f k = x) ` range f"
by (intro imageI rangeI)
qed
hence "r (f ?j) (f ?k)"
by (rule mono)
also have "f ?j = f i"
by (rule LeastI, rule refl)
finally show "r (f i) (f ?k)" .
qed
lemma finite_range_imp_finch:
"\<lbrakk>chain Y; finite (range Y)\<rbrakk> \<Longrightarrow> finite_chain Y"
apply (subgoal_tac "\<exists>k. \<forall>i. Y i \<sqsubseteq> Y k")
apply (erule exE)
apply (rule finite_chainI, assumption)
apply (rule max_in_chainI)
apply (rule antisym_less)
apply (erule (1) chain_mono)
apply (erule spec)
apply (rule finite_range_has_max)
apply (erule (1) chain_mono)
apply assumption
done
lemma bin_chain: "x \<sqsubseteq> y \<Longrightarrow> chain (\<lambda>i. if i=0 then x else y)"
by (rule chainI, simp)
lemma bin_chainmax:
"x \<sqsubseteq> y \<Longrightarrow> max_in_chain (Suc 0) (\<lambda>i. if i=0 then x else y)"
unfolding max_in_chain_def by simp
lemma lub_bin_chain:
"x \<sqsubseteq> y \<Longrightarrow> range (\<lambda>i::nat. if i=0 then x else y) <<| y"
apply (frule bin_chain)
apply (drule bin_chainmax)
apply (drule (1) lub_finch1)
apply simp
done
text {* the maximal element in a chain is its lub *}
lemma lub_chain_maxelem: "\<lbrakk>Y i = c; \<forall>i. Y i \<sqsubseteq> c\<rbrakk> \<Longrightarrow> lub (range Y) = c"
by (blast dest: ub_rangeD intro: thelubI is_lubI ub_rangeI)
subsection {* Directed sets *}
definition
directed :: "'a::po set \<Rightarrow> bool" where
"directed S = ((\<exists>x. x \<in> S) \<and> (\<forall>x\<in>S. \<forall>y\<in>S. \<exists>z\<in>S. x \<sqsubseteq> z \<and> y \<sqsubseteq> z))"
lemma directedI:
assumes 1: "\<exists>z. z \<in> S"
assumes 2: "\<And>x y. \<lbrakk>x \<in> S; y \<in> S\<rbrakk> \<Longrightarrow> \<exists>z\<in>S. x \<sqsubseteq> z \<and> y \<sqsubseteq> z"
shows "directed S"
unfolding directed_def using prems by fast
lemma directedD1: "directed S \<Longrightarrow> \<exists>z. z \<in> S"
unfolding directed_def by fast
lemma directedD2: "\<lbrakk>directed S; x \<in> S; y \<in> S\<rbrakk> \<Longrightarrow> \<exists>z\<in>S. x \<sqsubseteq> z \<and> y \<sqsubseteq> z"
unfolding directed_def by fast
lemma directedE1:
assumes S: "directed S"
obtains z where "z \<in> S"
by (insert directedD1 [OF S], fast)
lemma directedE2:
assumes S: "directed S"
assumes x: "x \<in> S" and y: "y \<in> S"
obtains z where "z \<in> S" "x \<sqsubseteq> z" "y \<sqsubseteq> z"
by (insert directedD2 [OF S x y], fast)
lemma directed_finiteI:
assumes U: "\<And>U. \<lbrakk>finite U; U \<subseteq> S\<rbrakk> \<Longrightarrow> \<exists>z\<in>S. U <| z"
shows "directed S"
proof (rule directedI)
have "finite {}" and "{} \<subseteq> S" by simp_all
hence "\<exists>z\<in>S. {} <| z" by (rule U)
thus "\<exists>z. z \<in> S" by simp
next
fix x y
assume "x \<in> S" and "y \<in> S"
hence "finite {x, y}" and "{x, y} \<subseteq> S" by simp_all
hence "\<exists>z\<in>S. {x, y} <| z" by (rule U)
thus "\<exists>z\<in>S. x \<sqsubseteq> z \<and> y \<sqsubseteq> z" by simp
qed
lemma directed_finiteD:
assumes S: "directed S"
shows "\<lbrakk>finite U; U \<subseteq> S\<rbrakk> \<Longrightarrow> \<exists>z\<in>S. U <| z"
proof (induct U set: finite)
case empty
from S have "\<exists>z. z \<in> S" by (rule directedD1)
thus "\<exists>z\<in>S. {} <| z" by simp
next
case (insert x F)
from `insert x F \<subseteq> S`
have xS: "x \<in> S" and FS: "F \<subseteq> S" by simp_all
from FS have "\<exists>y\<in>S. F <| y" by fact
then obtain y where yS: "y \<in> S" and Fy: "F <| y" ..
obtain z where zS: "z \<in> S" and xz: "x \<sqsubseteq> z" and yz: "y \<sqsubseteq> z"
using S xS yS by (rule directedE2)
from Fy yz have "F <| z" by (rule is_ub_upward)
with xz have "insert x F <| z" by simp
with zS show "\<exists>z\<in>S. insert x F <| z" ..
qed
lemma not_directed_empty [simp]: "\<not> directed {}"
by (rule notI, drule directedD1, simp)
lemma directed_singleton: "directed {x}"
by (rule directedI, auto)
lemma directed_bin: "x \<sqsubseteq> y \<Longrightarrow> directed {x, y}"
by (rule directedI, auto)
lemma directed_chain: "chain S \<Longrightarrow> directed (range S)"
apply (rule directedI)
apply (rule_tac x="S 0" in exI, simp)
apply (clarify, rename_tac m n)
apply (rule_tac x="S (max m n)" in bexI)
apply (simp add: chain_mono)
apply simp
done
end