more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
(* Author: Tobias Nipkow
Instantiation of the generic linear arithmetic package for int.
*)
signature INT_ARITH =
sig
val setup: Context.generic -> Context.generic
val global_setup: theory -> theory
end
structure Int_Arith : INT_ARITH =
struct
(* Update parameters of arithmetic prover *)
(* reduce contradictory =/</<= to False *)
(* Evaluation of terms of the form "m R n" where R is one of "=", "<=" or "<",
and m and n are ground terms over rings (roughly speaking).
That is, m and n consist only of 1s combined with "+", "-" and "*".
*)
val zeroth = (symmetric o mk_meta_eq) @{thm of_int_0};
val lhss0 = [@{cpat "0::?'a::ring"}];
fun proc0 phi ss ct =
let val T = ctyp_of_term ct
in if typ_of T = @{typ int} then NONE else
SOME (instantiate' [SOME T] [] zeroth)
end;
val zero_to_of_int_zero_simproc =
make_simproc {lhss = lhss0, name = "zero_to_of_int_zero_simproc",
proc = proc0, identifier = []};
val oneth = (symmetric o mk_meta_eq) @{thm of_int_1};
val lhss1 = [@{cpat "1::?'a::ring_1"}];
fun proc1 phi ss ct =
let val T = ctyp_of_term ct
in if typ_of T = @{typ int} then NONE else
SOME (instantiate' [SOME T] [] oneth)
end;
val one_to_of_int_one_simproc =
make_simproc {lhss = lhss1, name = "one_to_of_int_one_simproc",
proc = proc1, identifier = []};
fun check (Const (@{const_name Algebras.one}, @{typ int})) = false
| check (Const (@{const_name Algebras.one}, _)) = true
| check (Const (s, _)) = member (op =) [@{const_name "op ="},
@{const_name Algebras.times}, @{const_name Algebras.uminus},
@{const_name Algebras.minus}, @{const_name Algebras.plus},
@{const_name Algebras.zero},
@{const_name Algebras.less}, @{const_name Algebras.less_eq}] s
| check (a $ b) = check a andalso check b
| check _ = false;
val conv =
Simplifier.rewrite
(HOL_basic_ss addsimps
((map (fn th => th RS sym) [@{thm of_int_add}, @{thm of_int_mult},
@{thm of_int_diff}, @{thm of_int_minus}])@
[@{thm of_int_less_iff}, @{thm of_int_le_iff}, @{thm of_int_eq_iff}])
addsimprocs [zero_to_of_int_zero_simproc,one_to_of_int_one_simproc]);
fun sproc phi ss ct = if check (term_of ct) then SOME (conv ct) else NONE
val lhss' =
[@{cpat "(?x::?'a::ring_char_0) = (?y::?'a)"},
@{cpat "(?x::?'a::linordered_idom) < (?y::?'a)"},
@{cpat "(?x::?'a::linordered_idom) <= (?y::?'a)"}]
val zero_one_idom_simproc =
make_simproc {lhss = lhss' , name = "zero_one_idom_simproc",
proc = sproc, identifier = []}
val fast_int_arith_simproc =
Simplifier.simproc @{theory} "fast_int_arith"
["(m::'a::{linordered_idom,number_ring}) < n",
"(m::'a::{linordered_idom,number_ring}) <= n",
"(m::'a::{linordered_idom,number_ring}) = n"] (K Lin_Arith.simproc);
val global_setup = Simplifier.map_simpset
(fn simpset => simpset addsimprocs [fast_int_arith_simproc]);
fun number_of thy T n =
if not (Sign.of_sort thy (T, @{sort number}))
then raise CTERM ("number_of", [])
else Numeral.mk_cnumber (Thm.ctyp_of thy T) n
val setup =
Lin_Arith.add_inj_thms [@{thm zle_int} RS iffD2, @{thm int_int_eq} RS iffD2]
#> Lin_Arith.add_lessD @{thm zless_imp_add1_zle}
#> Lin_Arith.add_simps (@{thms simp_thms} @ @{thms arith_simps} @ @{thms rel_simps}
@ @{thms arith_special} @ @{thms int_arith_rules})
#> Lin_Arith.add_simprocs [zero_one_idom_simproc]
#> Lin_Arith.set_number_of number_of
#> Lin_Arith.add_inj_const (@{const_name of_nat}, HOLogic.natT --> HOLogic.intT)
#> Lin_Arith.add_discrete_type @{type_name Int.int}
end;