section \<open>Faces, Extreme Points, Polytopes, Polyhedra etc\<close>text\<open>Ported from HOL Light by L C Paulson\<close>theory Polytopeimports Cartesian_Euclidean_Spacebeginsubsection \<open>Faces of a (usually convex) set\<close>definition%important face_of :: "['a::real_vector set, 'a set] \<Rightarrow> bool" (infixr "(face'_of)" 50) where "T face_of S \<longleftrightarrow> T \<subseteq> S \<and> convex T \<and> (\<forall>a \<in> S. \<forall>b \<in> S. \<forall>x \<in> T. x \<in> open_segment a b \<longrightarrow> a \<in> T \<and> b \<in> T)"lemma face_ofD: "\<lbrakk>T face_of S; x \<in> open_segment a b; a \<in> S; b \<in> S; x \<in> T\<rbrakk> \<Longrightarrow> a \<in> T \<and> b \<in> T" unfolding face_of_def by blastlemma face_of_translation_eq [simp]: "((+) a ` T face_of (+) a ` S) \<longleftrightarrow> T face_of S"proof - have *: "\<And>a T S. T face_of S \<Longrightarrow> ((+) a ` T face_of (+) a ` S)" apply (simp add: face_of_def Ball_def, clarify) apply (drule open_segment_translation_eq [THEN iffD1]) using inj_image_mem_iff inj_add_left apply metis done show ?thesis apply (rule iffI) apply (force simp: image_comp o_def dest: * [where a = "-a"]) apply (blast intro: *) doneqedlemma face_of_linear_image: assumes "linear f" "inj f" shows "(f ` c face_of f ` S) \<longleftrightarrow> c face_of S"by (simp add: face_of_def inj_image_subset_iff inj_image_mem_iff open_segment_linear_image assms)lemma face_of_refl: "convex S \<Longrightarrow> S face_of S" by (auto simp: face_of_def)lemma face_of_refl_eq: "S face_of S \<longleftrightarrow> convex S" by (auto simp: face_of_def)lemma empty_face_of [iff]: "{} face_of S" by (simp add: face_of_def)lemma face_of_empty [simp]: "S face_of {} \<longleftrightarrow> S = {}" by (meson empty_face_of face_of_def subset_empty)lemma face_of_trans [trans]: "\<lbrakk>S face_of T; T face_of u\<rbrakk> \<Longrightarrow> S face_of u" unfolding face_of_def by (safe; blast)lemma face_of_face: "T face_of S \<Longrightarrow> (f face_of T \<longleftrightarrow> f face_of S \<and> f \<subseteq> T)" unfolding face_of_def by (safe; blast)lemma face_of_subset: "\<lbrakk>F face_of S; F \<subseteq> T; T \<subseteq> S\<rbrakk> \<Longrightarrow> F face_of T" unfolding face_of_def by (safe; blast)lemma face_of_slice: "\<lbrakk>F face_of S; convex T\<rbrakk> \<Longrightarrow> (F \<inter> T) face_of (S \<inter> T)" unfolding face_of_def by (blast intro: convex_Int)lemma face_of_Int: "\<lbrakk>t1 face_of S; t2 face_of S\<rbrakk> \<Longrightarrow> (t1 \<inter> t2) face_of S" unfolding face_of_def by (blast intro: convex_Int)lemma face_of_Inter: "\<lbrakk>A \<noteq> {}; \<And>T. T \<in> A \<Longrightarrow> T face_of S\<rbrakk> \<Longrightarrow> (\<Inter> A) face_of S" unfolding face_of_def by (blast intro: convex_Inter)lemma face_of_Int_Int: "\<lbrakk>F face_of T; F' face_of t'\<rbrakk> \<Longrightarrow> (F \<inter> F') face_of (T \<inter> t')" unfolding face_of_def by (blast intro: convex_Int)lemma face_of_imp_subset: "T face_of S \<Longrightarrow> T \<subseteq> S" unfolding face_of_def by blastproposition face_of_imp_eq_affine_Int: fixes S :: "'a::euclidean_space set" assumes S: "convex S" and T: "T face_of S" shows "T = (affine hull T) \<inter> S"proof - have "convex T" using T by (simp add: face_of_def) have *: False if x: "x \<in> affine hull T" and "x \<in> S" "x \<notin> T" and y: "y \<in> rel_interior T" for x y proof - obtain e where "e>0" and e: "cball y e \<inter> affine hull T \<subseteq> T" using y by (auto simp: rel_interior_cball) have "y \<noteq> x" "y \<in> S" "y \<in> T" using face_of_imp_subset rel_interior_subset T that by blast+ then have zne: "\<And>u. \<lbrakk>u \<in> {0<..<1}; (1 - u) *\<^sub>R y + u *\<^sub>R x \<in> T\<rbrakk> \<Longrightarrow> False" using \<open>x \<in> S\<close> \<open>x \<notin> T\<close> \<open>T face_of S\<close> unfolding face_of_def apply clarify apply (drule_tac x=x in bspec, assumption) apply (drule_tac x=y in bspec, assumption) apply (subst (asm) open_segment_commute) apply (force simp: open_segment_image_interval image_def) done have in01: "min (1/2) (e / norm (x - y)) \<in> {0<..<1}" using \<open>y \<noteq> x\<close> \<open>e > 0\<close> by simp show ?thesis apply (rule zne [OF in01]) apply (rule e [THEN subsetD]) apply (rule IntI) using \<open>y \<noteq> x\<close> \<open>e > 0\<close> apply (simp add: cball_def dist_norm algebra_simps) apply (simp add: Real_Vector_Spaces.scaleR_diff_right [symmetric] norm_minus_commute min_mult_distrib_right) apply (rule mem_affine [OF affine_affine_hull _ x]) using \<open>y \<in> T\<close> apply (auto simp: hull_inc) done qed show ?thesis apply (rule subset_antisym) using assms apply (simp add: hull_subset face_of_imp_subset) apply (cases "T={}", simp) apply (force simp: rel_interior_eq_empty [symmetric] \<open>convex T\<close> intro: *) doneqedlemma face_of_imp_closed: fixes S :: "'a::euclidean_space set" assumes "convex S" "closed S" "T face_of S" shows "closed T" by (metis affine_affine_hull affine_closed closed_Int face_of_imp_eq_affine_Int assms)lemma face_of_Int_supporting_hyperplane_le_strong: assumes "convex(S \<inter> {x. a \<bullet> x = b})" and aleb: "\<And>x. x \<in> S \<Longrightarrow> a \<bullet> x \<le> b" shows "(S \<inter> {x. a \<bullet> x = b}) face_of S"proof - have *: "a \<bullet> u = a \<bullet> x" if "x \<in> open_segment u v" "u \<in> S" "v \<in> S" and b: "b = a \<bullet> x" for u v x proof (rule antisym) show "a \<bullet> u \<le> a \<bullet> x" using aleb \<open>u \<in> S\<close> \<open>b = a \<bullet> x\<close> by blast next obtain \<xi> where "b = a \<bullet> ((1 - \<xi>) *\<^sub>R u + \<xi> *\<^sub>R v)" "0 < \<xi>" "\<xi> < 1" using \<open>b = a \<bullet> x\<close> \<open>x \<in> open_segment u v\<close> in_segment by (auto simp: open_segment_image_interval split: if_split_asm) then have "b + \<xi> * (a \<bullet> u) \<le> a \<bullet> u + \<xi> * b" using aleb [OF \<open>v \<in> S\<close>] by (simp add: algebra_simps) then have "(1 - \<xi>) * b \<le> (1 - \<xi>) * (a \<bullet> u)" by (simp add: algebra_simps) then have "b \<le> a \<bullet> u" using \<open>\<xi> < 1\<close> by auto with b show "a \<bullet> x \<le> a \<bullet> u" by simp qed show ?thesis apply (simp add: face_of_def assms) using "*" open_segment_commute by blastqedlemma face_of_Int_supporting_hyperplane_ge_strong: "\<lbrakk>convex(S \<inter> {x. a \<bullet> x = b}); \<And>x. x \<in> S \<Longrightarrow> a \<bullet> x \<ge> b\<rbrakk> \<Longrightarrow> (S \<inter> {x. a \<bullet> x = b}) face_of S" using face_of_Int_supporting_hyperplane_le_strong [of S "-a" "-b"] by simplemma face_of_Int_supporting_hyperplane_le: "\<lbrakk>convex S; \<And>x. x \<in> S \<Longrightarrow> a \<bullet> x \<le> b\<rbrakk> \<Longrightarrow> (S \<inter> {x. a \<bullet> x = b}) face_of S" by (simp add: convex_Int convex_hyperplane face_of_Int_supporting_hyperplane_le_strong)lemma face_of_Int_supporting_hyperplane_ge: "\<lbrakk>convex S; \<And>x. x \<in> S \<Longrightarrow> a \<bullet> x \<ge> b\<rbrakk> \<Longrightarrow> (S \<inter> {x. a \<bullet> x = b}) face_of S" by (simp add: convex_Int convex_hyperplane face_of_Int_supporting_hyperplane_ge_strong)lemma face_of_imp_convex: "T face_of S \<Longrightarrow> convex T" using face_of_def by blastlemma face_of_imp_compact: fixes S :: "'a::euclidean_space set" shows "\<lbrakk>convex S; compact S; T face_of S\<rbrakk> \<Longrightarrow> compact T" by (meson bounded_subset compact_eq_bounded_closed face_of_imp_closed face_of_imp_subset)lemma face_of_Int_subface: "\<lbrakk>A \<inter> B face_of A; A \<inter> B face_of B; C face_of A; D face_of B\<rbrakk> \<Longrightarrow> (C \<inter> D) face_of C \<and> (C \<inter> D) face_of D" by (meson face_of_Int_Int face_of_face inf_le1 inf_le2)lemma subset_of_face_of: fixes S :: "'a::real_normed_vector set" assumes "T face_of S" "u \<subseteq> S" "T \<inter> (rel_interior u) \<noteq> {}" shows "u \<subseteq> T"proof fix c assume "c \<in> u" obtain b where "b \<in> T" "b \<in> rel_interior u" using assms by auto then obtain e where "e>0" "b \<in> u" and e: "cball b e \<inter> affine hull u \<subseteq> u" by (auto simp: rel_interior_cball) show "c \<in> T" proof (cases "b=c") case True with \<open>b \<in> T\<close> show ?thesis by blast next case False define d where "d = b + (e / norm(b - c)) *\<^sub>R (b - c)" have "d \<in> cball b e \<inter> affine hull u" using \<open>e > 0\<close> \<open>b \<in> u\<close> \<open>c \<in> u\<close> by (simp add: d_def dist_norm hull_inc mem_affine_3_minus False) with e have "d \<in> u" by blast have nbc: "norm (b - c) + e > 0" using \<open>e > 0\<close> by (metis add.commute le_less_trans less_add_same_cancel2 norm_ge_zero) then have [simp]: "d \<noteq> c" using False scaleR_cancel_left [of "1 + (e / norm (b - c))" b c] by (simp add: algebra_simps d_def) (simp add: divide_simps) have [simp]: "((e - e * e / (e + norm (b - c))) / norm (b - c)) = (e / (e + norm (b - c)))" using False nbc by (simp add: divide_simps) (simp add: algebra_simps) have "b \<in> open_segment d c" apply (simp add: open_segment_image_interval) apply (simp add: d_def algebra_simps image_def) apply (rule_tac x="e / (e + norm (b - c))" in bexI) using False nbc \<open>0 < e\<close> apply (auto simp: algebra_simps) done then have "d \<in> T \<and> c \<in> T" apply (rule face_ofD [OF \<open>T face_of S\<close>]) using \<open>d \<in> u\<close> \<open>c \<in> u\<close> \<open>u \<subseteq> S\<close> \<open>b \<in> T\<close> apply auto done then show ?thesis .. qedqedlemma face_of_eq: fixes S :: "'a::real_normed_vector set" assumes "T face_of S" "u face_of S" "(rel_interior T) \<inter> (rel_interior u) \<noteq> {}" shows "T = u" apply (rule subset_antisym) apply (metis assms disjoint_iff_not_equal face_of_imp_subset rel_interior_subset subsetCE subset_of_face_of) by (metis assms disjoint_iff_not_equal face_of_imp_subset rel_interior_subset subset_iff subset_of_face_of)lemma face_of_disjoint_rel_interior: fixes S :: "'a::real_normed_vector set" assumes "T face_of S" "T \<noteq> S" shows "T \<inter> rel_interior S = {}" by (meson assms subset_of_face_of face_of_imp_subset order_refl subset_antisym)lemma face_of_disjoint_interior: fixes S :: "'a::real_normed_vector set" assumes "T face_of S" "T \<noteq> S" shows "T \<inter> interior S = {}"proof - have "T \<inter> interior S \<subseteq> rel_interior S" by (meson inf_sup_ord(2) interior_subset_rel_interior order.trans) thus ?thesis by (metis (no_types) Int_greatest assms face_of_disjoint_rel_interior inf_sup_ord(1) subset_empty)qedlemma face_of_subset_rel_boundary: fixes S :: "'a::real_normed_vector set" assumes "T face_of S" "T \<noteq> S" shows "T \<subseteq> (S - rel_interior S)"by (meson DiffI assms disjoint_iff_not_equal face_of_disjoint_rel_interior face_of_imp_subset rev_subsetD subsetI)lemma face_of_subset_rel_frontier: fixes S :: "'a::real_normed_vector set" assumes "T face_of S" "T \<noteq> S" shows "T \<subseteq> rel_frontier S" using assms closure_subset face_of_disjoint_rel_interior face_of_imp_subset rel_frontier_def by fastforcelemma face_of_aff_dim_lt: fixes S :: "'a::euclidean_space set" assumes "convex S" "T face_of S" "T \<noteq> S" shows "aff_dim T < aff_dim S"proof - have "aff_dim T \<le> aff_dim S" by (simp add: face_of_imp_subset aff_dim_subset assms) moreover have "aff_dim T \<noteq> aff_dim S" proof (cases "T = {}") case True then show ?thesis by (metis aff_dim_empty \<open>T \<noteq> S\<close>) next case False then show ?thesis by (metis Set.set_insert assms convex_rel_frontier_aff_dim dual_order.irrefl face_of_imp_convex face_of_subset_rel_frontier insert_not_empty subsetI) qed ultimately show ?thesis by simpqedlemma subset_of_face_of_affine_hull: fixes S :: "'a::euclidean_space set" assumes T: "T face_of S" and "convex S" "U \<subseteq> S" and dis: "\<not> disjnt (affine hull T) (rel_interior U)" shows "U \<subseteq> T" apply (rule subset_of_face_of [OF T \<open>U \<subseteq> S\<close>]) using face_of_imp_eq_affine_Int [OF \<open>convex S\<close> T] using rel_interior_subset [of U] dis using \<open>U \<subseteq> S\<close> disjnt_def by fastforcelemma affine_hull_face_of_disjoint_rel_interior: fixes S :: "'a::euclidean_space set" assumes "convex S" "F face_of S" "F \<noteq> S" shows "affine hull F \<inter> rel_interior S = {}" by (metis assms disjnt_def face_of_imp_subset order_refl subset_antisym subset_of_face_of_affine_hull)lemma affine_diff_divide: assumes "affine S" "k \<noteq> 0" "k \<noteq> 1" and xy: "x \<in> S" "y /\<^sub>R (1 - k) \<in> S" shows "(x - y) /\<^sub>R k \<in> S"proof - have "inverse(k) *\<^sub>R (x - y) = (1 - inverse k) *\<^sub>R inverse(1 - k) *\<^sub>R y + inverse(k) *\<^sub>R x" using assms by (simp add: algebra_simps) (simp add: scaleR_left_distrib [symmetric] divide_simps) then show ?thesis using \<open>affine S\<close> xy by (auto simp: affine_alt)qedproposition face_of_convex_hulls: assumes S: "finite S" "T \<subseteq> S" and disj: "affine hull T \<inter> convex hull (S - T) = {}" shows "(convex hull T) face_of (convex hull S)"proof - have fin: "finite T" "finite (S - T)" using assms by (auto simp: finite_subset) have *: "x \<in> convex hull T" if x: "x \<in> convex hull S" and y: "y \<in> convex hull S" and w: "w \<in> convex hull T" "w \<in> open_segment x y" for x y w proof - have waff: "w \<in> affine hull T" using convex_hull_subset_affine_hull w by blast obtain a b where a: "\<And>i. i \<in> S \<Longrightarrow> 0 \<le> a i" and asum: "sum a S = 1" and aeqx: "(\<Sum>i\<in>S. a i *\<^sub>R i) = x" and b: "\<And>i. i \<in> S \<Longrightarrow> 0 \<le> b i" and bsum: "sum b S = 1" and beqy: "(\<Sum>i\<in>S. b i *\<^sub>R i) = y" using x y by (auto simp: assms convex_hull_finite) obtain u where "(1 - u) *\<^sub>R x + u *\<^sub>R y \<in> convex hull T" "x \<noteq> y" and weq: "w = (1 - u) *\<^sub>R x + u *\<^sub>R y" and u01: "0 < u" "u < 1" using w by (auto simp: open_segment_image_interval split: if_split_asm) define c where "c i = (1 - u) * a i + u * b i" for i have cge0: "\<And>i. i \<in> S \<Longrightarrow> 0 \<le> c i" using a b u01 by (simp add: c_def) have sumc1: "sum c S = 1" by (simp add: c_def sum.distrib sum_distrib_left [symmetric] asum bsum) have sumci_xy: "(\<Sum>i\<in>S. c i *\<^sub>R i) = (1 - u) *\<^sub>R x + u *\<^sub>R y" apply (simp add: c_def sum.distrib scaleR_left_distrib) by (simp only: scaleR_scaleR [symmetric] Real_Vector_Spaces.scaleR_right.sum [symmetric] aeqx beqy) show ?thesis proof (cases "sum c (S - T) = 0") case True have ci0: "\<And>i. i \<in> (S - T) \<Longrightarrow> c i = 0" using True cge0 fin(2) sum_nonneg_eq_0_iff by auto have a0: "a i = 0" if "i \<in> (S - T)" for i using ci0 [OF that] u01 a [of i] b [of i] that by (simp add: c_def Groups.ordered_comm_monoid_add_class.add_nonneg_eq_0_iff) have [simp]: "sum a T = 1" using assms by (metis sum.mono_neutral_cong_right a0 asum) show ?thesis apply (simp add: convex_hull_finite \<open>finite T\<close>) apply (rule_tac x=a in exI) using a0 assms apply (auto simp: cge0 a aeqx [symmetric] sum.mono_neutral_right) done next case False define k where "k = sum c (S - T)" have "k > 0" using False unfolding k_def by (metis DiffD1 antisym_conv cge0 sum_nonneg not_less) have weq_sumsum: "w = sum (\<lambda>x. c x *\<^sub>R x) T + sum (\<lambda>x. c x *\<^sub>R x) (S - T)" by (metis (no_types) add.commute S(1) S(2) sum.subset_diff sumci_xy weq) show ?thesis proof (cases "k = 1") case True then have "sum c T = 0" by (simp add: S k_def sum_diff sumc1) then have [simp]: "sum c (S - T) = 1" by (simp add: S sum_diff sumc1) have ci0: "\<And>i. i \<in> T \<Longrightarrow> c i = 0" by (meson \<open>finite T\<close> \<open>sum c T = 0\<close> \<open>T \<subseteq> S\<close> cge0 sum_nonneg_eq_0_iff subsetCE) then have [simp]: "(\<Sum>i\<in>S-T. c i *\<^sub>R i) = w" by (simp add: weq_sumsum) have "w \<in> convex hull (S - T)" apply (simp add: convex_hull_finite fin) apply (rule_tac x=c in exI) apply (auto simp: cge0 weq True k_def) done then show ?thesis using disj waff by blast next case False then have sumcf: "sum c T = 1 - k" by (simp add: S k_def sum_diff sumc1) have "(\<Sum>i\<in>T. c i *\<^sub>R i) /\<^sub>R (1 - k) \<in> convex hull T" apply (simp add: convex_hull_finite fin) apply (rule_tac x="\<lambda>i. inverse (1-k) * c i" in exI) apply auto apply (metis sumcf cge0 inverse_nonnegative_iff_nonnegative mult_nonneg_nonneg S(2) sum_nonneg subsetCE) apply (metis False mult.commute right_inverse right_minus_eq sum_distrib_left sumcf) by (metis (mono_tags, lifting) scaleR_right.sum scaleR_scaleR sum.cong) with \<open>0 < k\<close> have "inverse(k) *\<^sub>R (w - sum (\<lambda>i. c i *\<^sub>R i) T) \<in> affine hull T" by (simp add: affine_diff_divide [OF affine_affine_hull] False waff convex_hull_subset_affine_hull [THEN subsetD]) moreover have "inverse(k) *\<^sub>R (w - sum (\<lambda>x. c x *\<^sub>R x) T) \<in> convex hull (S - T)" apply (simp add: weq_sumsum convex_hull_finite fin) apply (rule_tac x="\<lambda>i. inverse k * c i" in exI) using \<open>k > 0\<close> cge0 apply (auto simp: scaleR_right.sum sum_distrib_left [symmetric] k_def [symmetric]) done ultimately show ?thesis using disj by blast qed qed qed have [simp]: "convex hull T \<subseteq> convex hull S" by (simp add: \<open>T \<subseteq> S\<close> hull_mono) show ?thesis using open_segment_commute by (auto simp: face_of_def intro: *)qedproposition face_of_convex_hull_insert: "\<lbrakk>finite S; a \<notin> affine hull S; T face_of convex hull S\<rbrakk> \<Longrightarrow> T face_of convex hull insert a S" apply (rule face_of_trans, blast) apply (rule face_of_convex_hulls; force simp: insert_Diff_if) doneproposition face_of_affine_trivial: assumes "affine S" "T face_of S" shows "T = {} \<or> T = S"proof (rule ccontr, clarsimp) assume "T \<noteq> {}" "T \<noteq> S" then obtain a where "a \<in> T" by auto then have "a \<in> S" using \<open>T face_of S\<close> face_of_imp_subset by blast have "S \<subseteq> T" proof fix b assume "b \<in> S" show "b \<in> T" proof (cases "a = b") case True with \<open>a \<in> T\<close> show ?thesis by auto next case False then have "a \<in> open_segment (2 *\<^sub>R a - b) b" apply (auto simp: open_segment_def closed_segment_def) apply (rule_tac x="1/2" in exI) apply (simp add: algebra_simps) by (simp add: scaleR_2) moreover have "2 *\<^sub>R a - b \<in> S" by (rule mem_affine [OF \<open>affine S\<close> \<open>a \<in> S\<close> \<open>b \<in> S\<close>, of 2 "-1", simplified]) moreover note \<open>b \<in> S\<close> \<open>a \<in> T\<close> ultimately show ?thesis by (rule face_ofD [OF \<open>T face_of S\<close>, THEN conjunct2]) qed qed then show False using \<open>T \<noteq> S\<close> \<open>T face_of S\<close> face_of_imp_subset by blastqedlemma face_of_affine_eq: "affine S \<Longrightarrow> (T face_of S \<longleftrightarrow> T = {} \<or> T = S)"using affine_imp_convex face_of_affine_trivial face_of_refl by autoproposition Inter_faces_finite_altbound: fixes T :: "'a::euclidean_space set set" assumes cfaI: "\<And>c. c \<in> T \<Longrightarrow> c face_of S" shows "\<exists>F'. finite F' \<and> F' \<subseteq> T \<and> card F' \<le> DIM('a) + 2 \<and> \<Inter>F' = \<Inter>T"proof (cases "\<forall>F'. finite F' \<and> F' \<subseteq> T \<and> card F' \<le> DIM('a) + 2 \<longrightarrow> (\<exists>c. c \<in> T \<and> c \<inter> (\<Inter>F') \<subset> (\<Inter>F'))") case True then obtain c where c: "\<And>F'. \<lbrakk>finite F'; F' \<subseteq> T; card F' \<le> DIM('a) + 2\<rbrakk> \<Longrightarrow> c F' \<in> T \<and> c F' \<inter> (\<Inter>F') \<subset> (\<Inter>F')" by metis define d where "d = rec_nat {c{}} (\<lambda>n r. insert (c r) r)" have [simp]: "d 0 = {c {}}" by (simp add: d_def) have dSuc [simp]: "\<And>n. d (Suc n) = insert (c (d n)) (d n)" by (simp add: d_def) have dn_notempty: "d n \<noteq> {}" for n by (induction n) auto have dn_le_Suc: "d n \<subseteq> T \<and> finite(d n) \<and> card(d n) \<le> Suc n" if "n \<le> DIM('a) + 2" for n using that proof (induction n) case 0 then show ?case by (simp add: c) next case (Suc n) then show ?case by (auto simp: c card_insert_if) qed have aff_dim_le: "aff_dim(\<Inter>(d n)) \<le> DIM('a) - int n" if "n \<le> DIM('a) + 2" for n using that proof (induction n) case 0 then show ?case by (simp add: aff_dim_le_DIM) next case (Suc n) have fs: "\<Inter>(d (Suc n)) face_of S" by (meson Suc.prems cfaI dn_le_Suc dn_notempty face_of_Inter subsetCE) have condn: "convex (\<Inter>(d n))" using Suc.prems nat_le_linear not_less_eq_eq by (blast intro: face_of_imp_convex cfaI convex_Inter dest: dn_le_Suc) have fdn: "\<Inter>(d (Suc n)) face_of \<Inter>(d n)" by (metis (no_types, lifting) Inter_anti_mono Suc.prems dSuc cfaI dn_le_Suc dn_notempty face_of_Inter face_of_imp_subset face_of_subset subset_iff subset_insertI) have ne: "\<Inter>(d (Suc n)) \<noteq> \<Inter>(d n)" by (metis (no_types, lifting) Suc.prems Suc_leD c complete_lattice_class.Inf_insert dSuc dn_le_Suc less_irrefl order.trans) have *: "\<And>m::int. \<And>d. \<And>d'::int. d < d' \<and> d' \<le> m - n \<Longrightarrow> d \<le> m - of_nat(n+1)" by arith have "aff_dim (\<Inter>(d (Suc n))) < aff_dim (\<Inter>(d n))" by (rule face_of_aff_dim_lt [OF condn fdn ne]) moreover have "aff_dim (\<Inter>(d n)) \<le> int (DIM('a)) - int n" using Suc by auto ultimately have "aff_dim (\<Inter>(d (Suc n))) \<le> int (DIM('a)) - (n+1)" by arith then show ?case by linarith qed have "aff_dim (\<Inter>(d (DIM('a) + 2))) \<le> -2" using aff_dim_le [OF order_refl] by simp with aff_dim_geq [of "\<Inter>(d (DIM('a) + 2))"] show ?thesis using order.trans by fastforcenext case False then show ?thesis apply simp apply (erule ex_forward) by blastqedlemma faces_of_translation: "{F. F face_of image (\<lambda>x. a + x) S} = image (image (\<lambda>x. a + x)) {F. F face_of S}"apply (rule subset_antisym, clarify)apply (auto simp: image_iff)apply (metis face_of_imp_subset face_of_translation_eq subset_imageE)doneproposition face_of_Times: assumes "F face_of S" and "F' face_of S'" shows "(F \<times> F') face_of (S \<times> S')"proof - have "F \<times> F' \<subseteq> S \<times> S'" using assms [unfolded face_of_def] by blast moreover have "convex (F \<times> F')" using assms [unfolded face_of_def] by (blast intro: convex_Times) moreover have "a \<in> F \<and> a' \<in> F' \<and> b \<in> F \<and> b' \<in> F'" if "a \<in> S" "b \<in> S" "a' \<in> S'" "b' \<in> S'" "x \<in> F \<times> F'" "x \<in> open_segment (a,a') (b,b')" for a b a' b' x proof (cases "b=a \<or> b'=a'") case True with that show ?thesis using assms by (force simp: in_segment dest: face_ofD) next case False with assms [unfolded face_of_def] that show ?thesis by (blast dest!: open_segment_PairD) qed ultimately show ?thesis unfolding face_of_def by blastqedcorollary face_of_Times_decomp: fixes S :: "'a::euclidean_space set" and S' :: "'b::euclidean_space set" shows "c face_of (S \<times> S') \<longleftrightarrow> (\<exists>F F'. F face_of S \<and> F' face_of S' \<and> c = F \<times> F')" (is "?lhs = ?rhs")proof assume c: ?lhs show ?rhs proof (cases "c = {}") case True then show ?thesis by auto next case False have 1: "fst ` c \<subseteq> S" "snd ` c \<subseteq> S'" using c face_of_imp_subset by fastforce+ have "convex c" using c by (metis face_of_imp_convex) have conv: "convex (fst ` c)" "convex (snd ` c)" by (simp_all add: \<open>convex c\<close> convex_linear_image fst_linear snd_linear) have fstab: "a \<in> fst ` c \<and> b \<in> fst ` c" if "a \<in> S" "b \<in> S" "x \<in> open_segment a b" "(x,x') \<in> c" for a b x x' proof - have *: "(x,x') \<in> open_segment (a,x') (b,x')" using that by (auto simp: in_segment) show ?thesis using face_ofD [OF c *] that face_of_imp_subset [OF c] by force qed have fst: "fst ` c face_of S" by (force simp: face_of_def 1 conv fstab) have sndab: "a' \<in> snd ` c \<and> b' \<in> snd ` c" if "a' \<in> S'" "b' \<in> S'" "x' \<in> open_segment a' b'" "(x,x') \<in> c" for a' b' x x' proof - have *: "(x,x') \<in> open_segment (x,a') (x,b')" using that by (auto simp: in_segment) show ?thesis using face_ofD [OF c *] that face_of_imp_subset [OF c] by force qed have snd: "snd ` c face_of S'" by (force simp: face_of_def 1 conv sndab) have cc: "rel_interior c \<subseteq> rel_interior (fst ` c) \<times> rel_interior (snd ` c)" by (force simp: face_of_Times rel_interior_Times conv fst snd \<open>convex c\<close> fst_linear snd_linear rel_interior_convex_linear_image [symmetric]) have "c = fst ` c \<times> snd ` c" apply (rule face_of_eq [OF c]) apply (simp_all add: face_of_Times rel_interior_Times conv fst snd) using False rel_interior_eq_empty \<open>convex c\<close> cc apply blast done with fst snd show ?thesis by metis qednext assume ?rhs with face_of_Times show ?lhs by autoqedlemma face_of_Times_eq: fixes S :: "'a::euclidean_space set" and S' :: "'b::euclidean_space set" shows "(F \<times> F') face_of (S \<times> S') \<longleftrightarrow> F = {} \<or> F' = {} \<or> F face_of S \<and> F' face_of S'"by (auto simp: face_of_Times_decomp times_eq_iff)lemma hyperplane_face_of_halfspace_le: "{x. a \<bullet> x = b} face_of {x. a \<bullet> x \<le> b}"proof - have "{x. a \<bullet> x \<le> b} \<inter> {x. a \<bullet> x = b} = {x. a \<bullet> x = b}" by auto with face_of_Int_supporting_hyperplane_le [OF convex_halfspace_le [of a b], of a b] show ?thesis by autoqedlemma hyperplane_face_of_halfspace_ge: "{x. a \<bullet> x = b} face_of {x. a \<bullet> x \<ge> b}"proof - have "{x. a \<bullet> x \<ge> b} \<inter> {x. a \<bullet> x = b} = {x. a \<bullet> x = b}" by auto with face_of_Int_supporting_hyperplane_ge [OF convex_halfspace_ge [of b a], of b a] show ?thesis by autoqedlemma face_of_halfspace_le: fixes a :: "'n::euclidean_space" shows "F face_of {x. a \<bullet> x \<le> b} \<longleftrightarrow> F = {} \<or> F = {x. a \<bullet> x = b} \<or> F = {x. a \<bullet> x \<le> b}" (is "?lhs = ?rhs")proof (cases "a = 0") case True then show ?thesis using face_of_affine_eq affine_UNIV by autonext case False then have ine: "interior {x. a \<bullet> x \<le> b} \<noteq> {}" using halfspace_eq_empty_lt interior_halfspace_le by blast show ?thesis proof assume L: ?lhs have "F \<noteq> {x. a \<bullet> x \<le> b} \<Longrightarrow> F face_of {x. a \<bullet> x = b}" using False apply (simp add: frontier_halfspace_le [symmetric] rel_frontier_nonempty_interior [OF ine, symmetric]) apply (rule face_of_subset [OF L]) apply (simp add: face_of_subset_rel_frontier [OF L]) apply (force simp: rel_frontier_def closed_halfspace_le) done with L show ?rhs using affine_hyperplane face_of_affine_eq by blast next assume ?rhs then show ?lhs by (metis convex_halfspace_le empty_face_of face_of_refl hyperplane_face_of_halfspace_le) qedqedlemma face_of_halfspace_ge: fixes a :: "'n::euclidean_space" shows "F face_of {x. a \<bullet> x \<ge> b} \<longleftrightarrow> F = {} \<or> F = {x. a \<bullet> x = b} \<or> F = {x. a \<bullet> x \<ge> b}"using face_of_halfspace_le [of F "-a" "-b"] by simpsubsection\<open>Exposed faces\<close>text\<open>That is, faces that are intersection with supporting hyperplane\<close>definition%important exposed_face_of :: "['a::euclidean_space set, 'a set] \<Rightarrow> bool" (infixr "(exposed'_face'_of)" 50) where "T exposed_face_of S \<longleftrightarrow> T face_of S \<and> (\<exists>a b. S \<subseteq> {x. a \<bullet> x \<le> b} \<and> T = S \<inter> {x. a \<bullet> x = b})"lemma empty_exposed_face_of [iff]: "{} exposed_face_of S" apply (simp add: exposed_face_of_def) apply (rule_tac x=0 in exI) apply (rule_tac x=1 in exI, force) donelemma exposed_face_of_refl_eq [simp]: "S exposed_face_of S \<longleftrightarrow> convex S" apply (simp add: exposed_face_of_def face_of_refl_eq, auto) apply (rule_tac x=0 in exI)+ apply force donelemma exposed_face_of_refl: "convex S \<Longrightarrow> S exposed_face_of S" by simplemma exposed_face_of: "T exposed_face_of S \<longleftrightarrow> T face_of S \<and> (T = {} \<or> T = S \<or> (\<exists>a b. a \<noteq> 0 \<and> S \<subseteq> {x. a \<bullet> x \<le> b} \<and> T = S \<inter> {x. a \<bullet> x = b}))"proof (cases "T = {}") case True then show ?thesis by simpnext case False show ?thesis proof (cases "T = S") case True then show ?thesis by (simp add: face_of_refl_eq) next case False with \<open>T \<noteq> {}\<close> show ?thesis apply (auto simp: exposed_face_of_def) apply (metis inner_zero_left) done qedqedlemma exposed_face_of_Int_supporting_hyperplane_le: "\<lbrakk>convex S; \<And>x. x \<in> S \<Longrightarrow> a \<bullet> x \<le> b\<rbrakk> \<Longrightarrow> (S \<inter> {x. a \<bullet> x = b}) exposed_face_of S"by (force simp: exposed_face_of_def face_of_Int_supporting_hyperplane_le)lemma exposed_face_of_Int_supporting_hyperplane_ge: "\<lbrakk>convex S; \<And>x. x \<in> S \<Longrightarrow> a \<bullet> x \<ge> b\<rbrakk> \<Longrightarrow> (S \<inter> {x. a \<bullet> x = b}) exposed_face_of S"using exposed_face_of_Int_supporting_hyperplane_le [of S "-a" "-b"] by simpproposition exposed_face_of_Int: assumes "T exposed_face_of S" and "u exposed_face_of S" shows "(T \<inter> u) exposed_face_of S"proof - obtain a b where T: "S \<inter> {x. a \<bullet> x = b} face_of S" and S: "S \<subseteq> {x. a \<bullet> x \<le> b}" and teq: "T = S \<inter> {x. a \<bullet> x = b}" using assms by (auto simp: exposed_face_of_def) obtain a' b' where u: "S \<inter> {x. a' \<bullet> x = b'} face_of S" and s': "S \<subseteq> {x. a' \<bullet> x \<le> b'}" and ueq: "u = S \<inter> {x. a' \<bullet> x = b'}" using assms by (auto simp: exposed_face_of_def) have tu: "T \<inter> u face_of S" using T teq u ueq by (simp add: face_of_Int) have ss: "S \<subseteq> {x. (a + a') \<bullet> x \<le> b + b'}" using S s' by (force simp: inner_left_distrib) show ?thesis apply (simp add: exposed_face_of_def tu) apply (rule_tac x="a+a'" in exI) apply (rule_tac x="b+b'" in exI) using S s' apply (fastforce simp: ss inner_left_distrib teq ueq) doneqedproposition exposed_face_of_Inter: fixes P :: "'a::euclidean_space set set" assumes "P \<noteq> {}" and "\<And>T. T \<in> P \<Longrightarrow> T exposed_face_of S" shows "\<Inter>P exposed_face_of S"proof - obtain Q where "finite Q" and QsubP: "Q \<subseteq> P" "card Q \<le> DIM('a) + 2" and IntQ: "\<Inter>Q = \<Inter>P" using Inter_faces_finite_altbound [of P S] assms [unfolded exposed_face_of] by force show ?thesis proof (cases "Q = {}") case True then show ?thesis by (metis IntQ Inter_UNIV_conv(2) assms(1) assms(2) ex_in_conv) next case False have "Q \<subseteq> {T. T exposed_face_of S}" using QsubP assms by blast moreover have "Q \<subseteq> {T. T exposed_face_of S} \<Longrightarrow> \<Inter>Q exposed_face_of S" using \<open>finite Q\<close> False apply (induction Q rule: finite_induct) using exposed_face_of_Int apply fastforce+ done ultimately show ?thesis by (simp add: IntQ) qedqedproposition exposed_face_of_sums: assumes "convex S" and "convex T" and "F exposed_face_of {x + y | x y. x \<in> S \<and> y \<in> T}" (is "F exposed_face_of ?ST") obtains k l where "k exposed_face_of S" "l exposed_face_of T" "F = {x + y | x y. x \<in> k \<and> y \<in> l}"proof (cases "F = {}") case True then show ?thesis using that by blastnext case False show ?thesis proof (cases "F = ?ST") case True then show ?thesis using assms exposed_face_of_refl_eq that by blast next case False obtain p where "p \<in> F" using \<open>F \<noteq> {}\<close> by blast moreover obtain u z where T: "?ST \<inter> {x. u \<bullet> x = z} face_of ?ST" and S: "?ST \<subseteq> {x. u \<bullet> x \<le> z}" and feq: "F = ?ST \<inter> {x. u \<bullet> x = z}" using assms by (auto simp: exposed_face_of_def) ultimately obtain a0 b0 where p: "p = a0 + b0" and "a0 \<in> S" "b0 \<in> T" and z: "u \<bullet> p = z" by auto have lez: "u \<bullet> (x + y) \<le> z" if "x \<in> S" "y \<in> T" for x y using S that by auto have sef: "S \<inter> {x. u \<bullet> x = u \<bullet> a0} exposed_face_of S" apply (rule exposed_face_of_Int_supporting_hyperplane_le [OF \<open>convex S\<close>]) apply (metis p z add_le_cancel_right inner_right_distrib lez [OF _ \<open>b0 \<in> T\<close>]) done have tef: "T \<inter> {x. u \<bullet> x = u \<bullet> b0} exposed_face_of T" apply (rule exposed_face_of_Int_supporting_hyperplane_le [OF \<open>convex T\<close>]) apply (metis p z add.commute add_le_cancel_right inner_right_distrib lez [OF \<open>a0 \<in> S\<close>]) done have "{x + y |x y. x \<in> S \<and> u \<bullet> x = u \<bullet> a0 \<and> y \<in> T \<and> u \<bullet> y = u \<bullet> b0} \<subseteq> F" by (auto simp: feq) (metis inner_right_distrib p z) moreover have "F \<subseteq> {x + y |x y. x \<in> S \<and> u \<bullet> x = u \<bullet> a0 \<and> y \<in> T \<and> u \<bullet> y = u \<bullet> b0}" apply (auto simp: feq) apply (rename_tac x y) apply (rule_tac x=x in exI) apply (rule_tac x=y in exI, simp) using z p \<open>a0 \<in> S\<close> \<open>b0 \<in> T\<close> apply clarify apply (simp add: inner_right_distrib) apply (metis add_le_cancel_right antisym lez [unfolded inner_right_distrib] add.commute) done ultimately have "F = {x + y |x y. x \<in> S \<inter> {x. u \<bullet> x = u \<bullet> a0} \<and> y \<in> T \<inter> {x. u \<bullet> x = u \<bullet> b0}}" by blast then show ?thesis by (rule that [OF sef tef]) qedqedproposition exposed_face_of_parallel: "T exposed_face_of S \<longleftrightarrow> T face_of S \<and> (\<exists>a b. S \<subseteq> {x. a \<bullet> x \<le> b} \<and> T = S \<inter> {x. a \<bullet> x = b} \<and> (T \<noteq> {} \<longrightarrow> T \<noteq> S \<longrightarrow> a \<noteq> 0) \<and> (T \<noteq> S \<longrightarrow> (\<forall>w \<in> affine hull S. (w + a) \<in> affine hull S)))" (is "?lhs = ?rhs")proof assume ?lhs then show ?rhs proof (clarsimp simp: exposed_face_of_def) fix a b assume faceS: "S \<inter> {x. a \<bullet> x = b} face_of S" and Ssub: "S \<subseteq> {x. a \<bullet> x \<le> b}" show "\<exists>c d. S \<subseteq> {x. c \<bullet> x \<le> d} \<and> S \<inter> {x. a \<bullet> x = b} = S \<inter> {x. c \<bullet> x = d} \<and> (S \<inter> {x. a \<bullet> x = b} \<noteq> {} \<longrightarrow> S \<inter> {x. a \<bullet> x = b} \<noteq> S \<longrightarrow> c \<noteq> 0) \<and> (S \<inter> {x. a \<bullet> x = b} \<noteq> S \<longrightarrow> (\<forall>w \<in> affine hull S. w + c \<in> affine hull S))" proof (cases "affine hull S \<inter> {x. -a \<bullet> x \<le> -b} = {} \<or> affine hull S \<subseteq> {x. - a \<bullet> x \<le> - b}") case True then show ?thesis proof assume "affine hull S \<inter> {x. - a \<bullet> x \<le> - b} = {}" then show ?thesis apply (rule_tac x="0" in exI) apply (rule_tac x="1" in exI) using hull_subset by fastforce next assume "affine hull S \<subseteq> {x. - a \<bullet> x \<le> - b}" then show ?thesis apply (rule_tac x="0" in exI) apply (rule_tac x="0" in exI) using Ssub hull_subset by fastforce qed next case False then obtain a' b' where "a' \<noteq> 0" and le: "affine hull S \<inter> {x. a' \<bullet> x \<le> b'} = affine hull S \<inter> {x. - a \<bullet> x \<le> - b}" and eq: "affine hull S \<inter> {x. a' \<bullet> x = b'} = affine hull S \<inter> {x. - a \<bullet> x = - b}" and mem: "\<And>w. w \<in> affine hull S \<Longrightarrow> w + a' \<in> affine hull S" using affine_parallel_slice affine_affine_hull by metis show ?thesis proof (intro conjI impI allI ballI exI) have *: "S \<subseteq> - (affine hull S \<inter> {x. P x}) \<union> affine hull S \<inter> {x. Q x} \<Longrightarrow> S \<subseteq> {x. \<not> P x \<or> Q x}" for P Q using hull_subset by fastforce have "S \<subseteq> {x. \<not> (a' \<bullet> x \<le> b') \<or> a' \<bullet> x = b'}" apply (rule *) apply (simp only: le eq) using Ssub by auto then show "S \<subseteq> {x. - a' \<bullet> x \<le> - b'}" by auto show "S \<inter> {x. a \<bullet> x = b} = S \<inter> {x. - a' \<bullet> x = - b'}" using eq hull_subset [of S affine] by force show "\<lbrakk>S \<inter> {x. a \<bullet> x = b} \<noteq> {}; S \<inter> {x. a \<bullet> x = b} \<noteq> S\<rbrakk> \<Longrightarrow> - a' \<noteq> 0" using \<open>a' \<noteq> 0\<close> by auto show "w + - a' \<in> affine hull S" if "S \<inter> {x. a \<bullet> x = b} \<noteq> S" "w \<in> affine hull S" for w proof - have "w + 1 *\<^sub>R (w - (w + a')) \<in> affine hull S" using affine_affine_hull mem mem_affine_3_minus that(2) by blast then show ?thesis by simp qed qed qedqednext assume ?rhs then show ?lhs unfolding exposed_face_of_def by blastqedsubsection\<open>Extreme points of a set: its singleton faces\<close>definition%important extreme_point_of :: "['a::real_vector, 'a set] \<Rightarrow> bool" (infixr "(extreme'_point'_of)" 50) where "x extreme_point_of S \<longleftrightarrow> x \<in> S \<and> (\<forall>a \<in> S. \<forall>b \<in> S. x \<notin> open_segment a b)"lemma extreme_point_of_stillconvex: "convex S \<Longrightarrow> (x extreme_point_of S \<longleftrightarrow> x \<in> S \<and> convex(S - {x}))" by (fastforce simp add: convex_contains_segment extreme_point_of_def open_segment_def)lemma face_of_singleton: "{x} face_of S \<longleftrightarrow> x extreme_point_of S"by (fastforce simp add: extreme_point_of_def face_of_def)lemma extreme_point_not_in_REL_INTERIOR: fixes S :: "'a::real_normed_vector set" shows "\<lbrakk>x extreme_point_of S; S \<noteq> {x}\<rbrakk> \<Longrightarrow> x \<notin> rel_interior S"apply (simp add: face_of_singleton [symmetric])apply (blast dest: face_of_disjoint_rel_interior)donelemma extreme_point_not_in_interior: fixes S :: "'a::{real_normed_vector, perfect_space} set" shows "x extreme_point_of S \<Longrightarrow> x \<notin> interior S"apply (case_tac "S = {x}")apply (simp add: empty_interior_finite)by (meson contra_subsetD extreme_point_not_in_REL_INTERIOR interior_subset_rel_interior)lemma extreme_point_of_face: "F face_of S \<Longrightarrow> v extreme_point_of F \<longleftrightarrow> v extreme_point_of S \<and> v \<in> F" by (meson empty_subsetI face_of_face face_of_singleton insert_subset)lemma extreme_point_of_convex_hull: "x extreme_point_of (convex hull S) \<Longrightarrow> x \<in> S"apply (simp add: extreme_point_of_stillconvex)using hull_minimal [of S "(convex hull S) - {x}" convex]using hull_subset [of S convex]apply blastdoneproposition extreme_points_of_convex_hull: "{x. x extreme_point_of (convex hull S)} \<subseteq> S" using extreme_point_of_convex_hull by autolemma extreme_point_of_empty [simp]: "\<not> (x extreme_point_of {})" by (simp add: extreme_point_of_def)lemma extreme_point_of_singleton [iff]: "x extreme_point_of {a} \<longleftrightarrow> x = a" using extreme_point_of_stillconvex by autolemma extreme_point_of_translation_eq: "(a + x) extreme_point_of (image (\<lambda>x. a + x) S) \<longleftrightarrow> x extreme_point_of S"by (auto simp: extreme_point_of_def)lemma extreme_points_of_translation: "{x. x extreme_point_of (image (\<lambda>x. a + x) S)} = (\<lambda>x. a + x) ` {x. x extreme_point_of S}" using extreme_point_of_translation_eq by auto (metis (no_types, lifting) image_iff mem_Collect_eq minus_add_cancel)lemma extreme_points_of_translation_subtract: "{x. x extreme_point_of (image (\<lambda>x. x - a) S)} = (\<lambda>x. x - a) ` {x. x extreme_point_of S}" using extreme_points_of_translation [of "- a" S] by simplemma extreme_point_of_Int: "\<lbrakk>x extreme_point_of S; x extreme_point_of T\<rbrakk> \<Longrightarrow> x extreme_point_of (S \<inter> T)"by (simp add: extreme_point_of_def)lemma extreme_point_of_Int_supporting_hyperplane_le: "\<lbrakk>S \<inter> {x. a \<bullet> x = b} = {c}; \<And>x. x \<in> S \<Longrightarrow> a \<bullet> x \<le> b\<rbrakk> \<Longrightarrow> c extreme_point_of S"apply (simp add: face_of_singleton [symmetric])by (metis face_of_Int_supporting_hyperplane_le_strong convex_singleton)lemma extreme_point_of_Int_supporting_hyperplane_ge: "\<lbrakk>S \<inter> {x. a \<bullet> x = b} = {c}; \<And>x. x \<in> S \<Longrightarrow> a \<bullet> x \<ge> b\<rbrakk> \<Longrightarrow> c extreme_point_of S"apply (simp add: face_of_singleton [symmetric])by (metis face_of_Int_supporting_hyperplane_ge_strong convex_singleton)lemma exposed_point_of_Int_supporting_hyperplane_le: "\<lbrakk>S \<inter> {x. a \<bullet> x = b} = {c}; \<And>x. x \<in> S \<Longrightarrow> a \<bullet> x \<le> b\<rbrakk> \<Longrightarrow> {c} exposed_face_of S"apply (simp add: exposed_face_of_def face_of_singleton)apply (force simp: extreme_point_of_Int_supporting_hyperplane_le)donelemma exposed_point_of_Int_supporting_hyperplane_ge: "\<lbrakk>S \<inter> {x. a \<bullet> x = b} = {c}; \<And>x. x \<in> S \<Longrightarrow> a \<bullet> x \<ge> b\<rbrakk> \<Longrightarrow> {c} exposed_face_of S"using exposed_point_of_Int_supporting_hyperplane_le [of S "-a" "-b" c]by simplemma extreme_point_of_convex_hull_insert: "\<lbrakk>finite S; a \<notin> convex hull S\<rbrakk> \<Longrightarrow> a extreme_point_of (convex hull (insert a S))"apply (case_tac "a \<in> S")apply (simp add: hull_inc)using face_of_convex_hulls [of "insert a S" "{a}"]apply (auto simp: face_of_singleton hull_same)donesubsection\<open>Facets\<close>definition%important facet_of :: "['a::euclidean_space set, 'a set] \<Rightarrow> bool" (infixr "(facet'_of)" 50) where "F facet_of S \<longleftrightarrow> F face_of S \<and> F \<noteq> {} \<and> aff_dim F = aff_dim S - 1"lemma facet_of_empty [simp]: "\<not> S facet_of {}" by (simp add: facet_of_def)lemma facet_of_irrefl [simp]: "\<not> S facet_of S " by (simp add: facet_of_def)lemma facet_of_imp_face_of: "F facet_of S \<Longrightarrow> F face_of S" by (simp add: facet_of_def)lemma facet_of_imp_subset: "F facet_of S \<Longrightarrow> F \<subseteq> S" by (simp add: face_of_imp_subset facet_of_def)lemma hyperplane_facet_of_halfspace_le: "a \<noteq> 0 \<Longrightarrow> {x. a \<bullet> x = b} facet_of {x. a \<bullet> x \<le> b}"unfolding facet_of_def hyperplane_eq_emptyby (auto simp: hyperplane_face_of_halfspace_ge hyperplane_face_of_halfspace_le DIM_positive Suc_leI of_nat_diff aff_dim_halfspace_le)lemma hyperplane_facet_of_halfspace_ge: "a \<noteq> 0 \<Longrightarrow> {x. a \<bullet> x = b} facet_of {x. a \<bullet> x \<ge> b}"unfolding facet_of_def hyperplane_eq_emptyby (auto simp: hyperplane_face_of_halfspace_le hyperplane_face_of_halfspace_ge DIM_positive Suc_leI of_nat_diff aff_dim_halfspace_ge)lemma facet_of_halfspace_le: "F facet_of {x. a \<bullet> x \<le> b} \<longleftrightarrow> a \<noteq> 0 \<and> F = {x. a \<bullet> x = b}" (is "?lhs = ?rhs")proof assume c: ?lhs with c facet_of_irrefl show ?rhs by (force simp: aff_dim_halfspace_le facet_of_def face_of_halfspace_le cong: conj_cong split: if_split_asm)next assume ?rhs then show ?lhs by (simp add: hyperplane_facet_of_halfspace_le)qedlemma facet_of_halfspace_ge: "F facet_of {x. a \<bullet> x \<ge> b} \<longleftrightarrow> a \<noteq> 0 \<and> F = {x. a \<bullet> x = b}"using facet_of_halfspace_le [of F "-a" "-b"] by simpsubsection \<open>Edges: faces of affine dimension 1\<close> (*FIXME too small subsection, rearrange? *)definition%important edge_of :: "['a::euclidean_space set, 'a set] \<Rightarrow> bool" (infixr "(edge'_of)" 50) where "e edge_of S \<longleftrightarrow> e face_of S \<and> aff_dim e = 1"lemma edge_of_imp_subset: "S edge_of T \<Longrightarrow> S \<subseteq> T"by (simp add: edge_of_def face_of_imp_subset)subsection\<open>Existence of extreme points\<close>proposition different_norm_3_collinear_points: fixes a :: "'a::euclidean_space" assumes "x \<in> open_segment a b" "norm(a) = norm(b)" "norm(x) = norm(b)" shows Falseproof - obtain u where "norm ((1 - u) *\<^sub>R a + u *\<^sub>R b) = norm b" and "a \<noteq> b" and u01: "0 < u" "u < 1" using assms by (auto simp: open_segment_image_interval if_splits) then have "(1 - u) *\<^sub>R a \<bullet> (1 - u) *\<^sub>R a + ((1 - u) * 2) *\<^sub>R a \<bullet> u *\<^sub>R b = (1 - u * u) *\<^sub>R (a \<bullet> a)" using assms by (simp add: norm_eq algebra_simps inner_commute) then have "(1 - u) *\<^sub>R ((1 - u) *\<^sub>R a \<bullet> a + (2 * u) *\<^sub>R a \<bullet> b) = (1 - u) *\<^sub>R ((1 + u) *\<^sub>R (a \<bullet> a))" by (simp add: algebra_simps) then have "(1 - u) *\<^sub>R (a \<bullet> a) + (2 * u) *\<^sub>R (a \<bullet> b) = (1 + u) *\<^sub>R (a \<bullet> a)" using u01 by auto then have "a \<bullet> b = a \<bullet> a" using u01 by (simp add: algebra_simps) then have "a = b" using \<open>norm(a) = norm(b)\<close> norm_eq vector_eq by fastforce then show ?thesis using \<open>a \<noteq> b\<close> by forceqedproposition extreme_point_exists_convex: fixes S :: "'a::euclidean_space set" assumes "compact S" "convex S" "S \<noteq> {}" obtains x where "x extreme_point_of S"proof - obtain x where "x \<in> S" and xsup: "\<And>y. y \<in> S \<Longrightarrow> norm y \<le> norm x" using distance_attains_sup [of S 0] assms by auto have False if "a \<in> S" "b \<in> S" and x: "x \<in> open_segment a b" for a b proof - have noax: "norm a \<le> norm x" and nobx: "norm b \<le> norm x" using xsup that by auto have "a \<noteq> b" using empty_iff open_segment_idem x by auto have *: "(1 - u) * na + u * nb < norm x" if "na < norm x" "nb \<le> norm x" "0 < u" "u < 1" for na nb u proof - have "(1 - u) * na + u * nb < (1 - u) * norm x + u * nb" by (simp add: that) also have "... \<le> (1 - u) * norm x + u * norm x" by (simp add: that) finally have "(1 - u) * na + u * nb < (1 - u) * norm x + u * norm x" . then show ?thesis using scaleR_collapse [symmetric, of "norm x" u] by auto qed have "norm x < norm x" if "norm a < norm x" using x apply (clarsimp simp only: open_segment_image_interval \<open>a \<noteq> b\<close> if_False) apply (rule norm_triangle_lt) apply (simp add: norm_mult) using * [of "norm a" "norm b"] nobx that apply blast done moreover have "norm x < norm x" if "norm b < norm x" using x apply (clarsimp simp only: open_segment_image_interval \<open>a \<noteq> b\<close> if_False) apply (rule norm_triangle_lt) apply (simp add: norm_mult) using * [of "norm b" "norm a" "1-u" for u] noax that apply (simp add: add.commute) done ultimately have "\<not> (norm a < norm x) \<and> \<not> (norm b < norm x)" by auto then show ?thesis using different_norm_3_collinear_points noax nobx that(3) by fastforce qed then show ?thesis apply (rule_tac x=x in that) apply (force simp: extreme_point_of_def \<open>x \<in> S\<close>) doneqedsubsection\<open>Krein-Milman, the weaker form\<close>proposition Krein_Milman: fixes S :: "'a::euclidean_space set" assumes "compact S" "convex S" shows "S = closure(convex hull {x. x extreme_point_of S})"proof (cases "S = {}") case True then show ?thesis by simpnext case False have "closed S" by (simp add: \<open>compact S\<close> compact_imp_closed) have "closure (convex hull {x. x extreme_point_of S}) \<subseteq> S" apply (rule closure_minimal [OF hull_minimal \<open>closed S\<close>]) using assms apply (auto simp: extreme_point_of_def) done moreover have "u \<in> closure (convex hull {x. x extreme_point_of S})" if "u \<in> S" for u proof (rule ccontr) assume unot: "u \<notin> closure(convex hull {x. x extreme_point_of S})" then obtain a b where "a \<bullet> u < b" and ab: "\<And>x. x \<in> closure(convex hull {x. x extreme_point_of S}) \<Longrightarrow> b < a \<bullet> x" using separating_hyperplane_closed_point [of "closure(convex hull {x. x extreme_point_of S})"] by blast have "continuous_on S ((\<bullet>) a)" by (rule continuous_intros)+ then obtain m where "m \<in> S" and m: "\<And>y. y \<in> S \<Longrightarrow> a \<bullet> m \<le> a \<bullet> y" using continuous_attains_inf [of S "\<lambda>x. a \<bullet> x"] \<open>compact S\<close> \<open>u \<in> S\<close> by auto define T where "T = S \<inter> {x. a \<bullet> x = a \<bullet> m}" have "m \<in> T" by (simp add: T_def \<open>m \<in> S\<close>) moreover have "compact T" by (simp add: T_def compact_Int_closed [OF \<open>compact S\<close> closed_hyperplane]) moreover have "convex T" by (simp add: T_def convex_Int [OF \<open>convex S\<close> convex_hyperplane]) ultimately obtain v where v: "v extreme_point_of T" using extreme_point_exists_convex [of T] by auto then have "{v} face_of T" by (simp add: face_of_singleton) also have "T face_of S" by (simp add: T_def m face_of_Int_supporting_hyperplane_ge [OF \<open>convex S\<close>]) finally have "v extreme_point_of S" by (simp add: face_of_singleton) then have "b < a \<bullet> v" using closure_subset by (simp add: closure_hull hull_inc ab) then show False using \<open>a \<bullet> u < b\<close> \<open>{v} face_of T\<close> face_of_imp_subset m T_def that by fastforce qed ultimately show ?thesis by blastqedtext\<open>Now the sharper form.\<close>lemma Krein_Milman_Minkowski_aux: fixes S :: "'a::euclidean_space set" assumes n: "dim S = n" and S: "compact S" "convex S" "0 \<in> S" shows "0 \<in> convex hull {x. x extreme_point_of S}"using n Sproof (induction n arbitrary: S rule: less_induct) case (less n S) show ?case proof (cases "0 \<in> rel_interior S") case True with Krein_Milman show ?thesis by (metis subsetD convex_convex_hull convex_rel_interior_closure less.prems(2) less.prems(3) rel_interior_subset) next case False have "rel_interior S \<noteq> {}" by (simp add: rel_interior_convex_nonempty_aux less) then obtain c where c: "c \<in> rel_interior S" by blast obtain a where "a \<noteq> 0" and le_ay: "\<And>y. y \<in> S \<Longrightarrow> a \<bullet> 0 \<le> a \<bullet> y" and less_ay: "\<And>y. y \<in> rel_interior S \<Longrightarrow> a \<bullet> 0 < a \<bullet> y" by (blast intro: supporting_hyperplane_rel_boundary intro!: less False) have face: "S \<inter> {x. a \<bullet> x = 0} face_of S" apply (rule face_of_Int_supporting_hyperplane_ge [OF \<open>convex S\<close>]) using le_ay by auto then have co: "compact (S \<inter> {x. a \<bullet> x = 0})" "convex (S \<inter> {x. a \<bullet> x = 0})" using less.prems by (blast intro: face_of_imp_compact face_of_imp_convex)+ have "a \<bullet> y = 0" if "y \<in> span (S \<inter> {x. a \<bullet> x = 0})" for y proof - have "y \<in> span {x. a \<bullet> x = 0}" by (metis inf.cobounded2 span_mono subsetCE that) then show ?thesis by (blast intro: span_induct [OF _ subspace_hyperplane]) qed then have "dim (S \<inter> {x. a \<bullet> x = 0}) < n" by (metis (no_types) less_ay c subsetD dim_eq_span inf.strict_order_iff inf_le1 \<open>dim S = n\<close> not_le rel_interior_subset span_0 span_base) then have "0 \<in> convex hull {x. x extreme_point_of (S \<inter> {x. a \<bullet> x = 0})}" by (rule less.IH) (auto simp: co less.prems) then show ?thesis by (metis (mono_tags, lifting) Collect_mono_iff \<open>S \<inter> {x. a \<bullet> x = 0} face_of S\<close> extreme_point_of_face hull_mono subset_iff) qedqedtheorem Krein_Milman_Minkowski: fixes S :: "'a::euclidean_space set" assumes "compact S" "convex S" shows "S = convex hull {x. x extreme_point_of S}"proof show "S \<subseteq> convex hull {x. x extreme_point_of S}" proof fix a assume [simp]: "a \<in> S" have 1: "compact ((+) (- a) ` S)" by (simp add: \<open>compact S\<close> compact_translation_subtract cong: image_cong_simp) have 2: "convex ((+) (- a) ` S)" by (simp add: \<open>convex S\<close> compact_translation_subtract) show a_invex: "a \<in> convex hull {x. x extreme_point_of S}" using Krein_Milman_Minkowski_aux [OF refl 1 2] convex_hull_translation [of "-a"] by (auto simp: extreme_points_of_translation_subtract translation_assoc cong: image_cong_simp) qednext show "convex hull {x. x extreme_point_of S} \<subseteq> S" proof - have "{a. a extreme_point_of S} \<subseteq> S" using extreme_point_of_def by blast then show ?thesis by (simp add: \<open>convex S\<close> hull_minimal) qedqedsubsection\<open>Applying it to convex hulls of explicitly indicated finite sets\<close>corollary Krein_Milman_polytope: fixes S :: "'a::euclidean_space set" shows "finite S \<Longrightarrow> convex hull S = convex hull {x. x extreme_point_of (convex hull S)}" by (simp add: Krein_Milman_Minkowski finite_imp_compact_convex_hull)lemma extreme_points_of_convex_hull_eq: fixes S :: "'a::euclidean_space set" shows "\<lbrakk>compact S; \<And>T. T \<subset> S \<Longrightarrow> convex hull T \<noteq> convex hull S\<rbrakk> \<Longrightarrow> {x. x extreme_point_of (convex hull S)} = S"by (metis (full_types) Krein_Milman_Minkowski compact_convex_hull convex_convex_hull extreme_points_of_convex_hull psubsetI)lemma extreme_point_of_convex_hull_eq: fixes S :: "'a::euclidean_space set" shows "\<lbrakk>compact S; \<And>T. T \<subset> S \<Longrightarrow> convex hull T \<noteq> convex hull S\<rbrakk> \<Longrightarrow> (x extreme_point_of (convex hull S) \<longleftrightarrow> x \<in> S)"using extreme_points_of_convex_hull_eq by autolemma extreme_point_of_convex_hull_convex_independent: fixes S :: "'a::euclidean_space set" assumes "compact S" and S: "\<And>a. a \<in> S \<Longrightarrow> a \<notin> convex hull (S - {a})" shows "(x extreme_point_of (convex hull S) \<longleftrightarrow> x \<in> S)"proof - have "convex hull T \<noteq> convex hull S" if "T \<subset> S" for T proof - obtain a where "T \<subseteq> S" "a \<in> S" "a \<notin> T" using \<open>T \<subset> S\<close> by blast then show ?thesis by (metis (full_types) Diff_eq_empty_iff Diff_insert0 S hull_mono hull_subset insert_Diff_single subsetCE) qed then show ?thesis by (rule extreme_point_of_convex_hull_eq [OF \<open>compact S\<close>])qedlemma extreme_point_of_convex_hull_affine_independent: fixes S :: "'a::euclidean_space set" shows "\<not> affine_dependent S \<Longrightarrow> (x extreme_point_of (convex hull S) \<longleftrightarrow> x \<in> S)"by (metis aff_independent_finite affine_dependent_def affine_hull_convex_hull extreme_point_of_convex_hull_convex_independent finite_imp_compact hull_inc)text\<open>Elementary proofs exist, not requiring Euclidean spaces and all this development\<close>lemma extreme_point_of_convex_hull_2: fixes x :: "'a::euclidean_space" shows "x extreme_point_of (convex hull {a,b}) \<longleftrightarrow> x = a \<or> x = b"proof - have "x extreme_point_of (convex hull {a,b}) \<longleftrightarrow> x \<in> {a,b}" by (intro extreme_point_of_convex_hull_affine_independent affine_independent_2) then show ?thesis by simpqedlemma extreme_point_of_segment: fixes x :: "'a::euclidean_space" shows "x extreme_point_of closed_segment a b \<longleftrightarrow> x = a \<or> x = b"by (simp add: extreme_point_of_convex_hull_2 segment_convex_hull)lemma face_of_convex_hull_subset: fixes S :: "'a::euclidean_space set" assumes "compact S" and T: "T face_of (convex hull S)" obtains s' where "s' \<subseteq> S" "T = convex hull s'"apply (rule_tac s' = "{x. x extreme_point_of T}" in that)using T extreme_point_of_convex_hull extreme_point_of_face apply blastby (metis (no_types) Krein_Milman_Minkowski assms compact_convex_hull convex_convex_hull face_of_imp_compact face_of_imp_convex)lemma face_of_convex_hull_aux: assumes eq: "x *\<^sub>R p = u *\<^sub>R a + v *\<^sub>R b + w *\<^sub>R c" and x: "u + v + w = x" "x \<noteq> 0" and S: "affine S" "a \<in> S" "b \<in> S" "c \<in> S" shows "p \<in> S"proof - have "p = (u *\<^sub>R a + v *\<^sub>R b + w *\<^sub>R c) /\<^sub>R x" by (metis \<open>x \<noteq> 0\<close> eq mult.commute right_inverse scaleR_one scaleR_scaleR) moreover have "affine hull {a,b,c} \<subseteq> S" by (simp add: S hull_minimal) moreover have "(u *\<^sub>R a + v *\<^sub>R b + w *\<^sub>R c) /\<^sub>R x \<in> affine hull {a,b,c}" apply (simp add: affine_hull_3) apply (rule_tac x="u/x" in exI) apply (rule_tac x="v/x" in exI) apply (rule_tac x="w/x" in exI) using x apply (auto simp: algebra_simps divide_simps) done ultimately show ?thesis by forceqedproposition face_of_convex_hull_insert_eq: fixes a :: "'a :: euclidean_space" assumes "finite S" and a: "a \<notin> affine hull S" shows "(F face_of (convex hull (insert a S)) \<longleftrightarrow> F face_of (convex hull S) \<or> (\<exists>F'. F' face_of (convex hull S) \<and> F = convex hull (insert a F')))" (is "F face_of ?CAS \<longleftrightarrow> _")proof safe assume F: "F face_of ?CAS" and *: "\<nexists>F'. F' face_of convex hull S \<and> F = convex hull insert a F'" obtain T where T: "T \<subseteq> insert a S" and FeqT: "F = convex hull T" by (metis F \<open>finite S\<close> compact_insert finite_imp_compact face_of_convex_hull_subset) show "F face_of convex hull S" proof (cases "a \<in> T") case True have "F = convex hull insert a (convex hull T \<inter> convex hull S)" proof have "T \<subseteq> insert a (convex hull T \<inter> convex hull S)" using T hull_subset by fastforce then show "F \<subseteq> convex hull insert a (convex hull T \<inter> convex hull S)" by (simp add: FeqT hull_mono) show "convex hull insert a (convex hull T \<inter> convex hull S) \<subseteq> F" apply (rule hull_minimal) using True by (auto simp: \<open>F = convex hull T\<close> hull_inc) qed moreover have "convex hull T \<inter> convex hull S face_of convex hull S" by (metis F FeqT convex_convex_hull face_of_slice hull_mono inf.absorb_iff2 subset_insertI) ultimately show ?thesis using * by force next case False then show ?thesis by (metis FeqT F T face_of_subset hull_mono subset_insert subset_insertI) qednext assume "F face_of convex hull S" show "F face_of ?CAS" by (simp add: \<open>F face_of convex hull S\<close> a face_of_convex_hull_insert \<open>finite S\<close>)next fix F assume F: "F face_of convex hull S" show "convex hull insert a F face_of ?CAS" proof (cases "S = {}") case True then show ?thesis using F face_of_affine_eq by auto next case False have anotc: "a \<notin> convex hull S" by (metis (no_types) a affine_hull_convex_hull hull_inc) show ?thesis proof (cases "F = {}") case True show ?thesis using anotc by (simp add: \<open>F = {}\<close> \<open>finite S\<close> extreme_point_of_convex_hull_insert face_of_singleton) next case False have "convex hull insert a F \<subseteq> ?CAS" by (simp add: F a \<open>finite S\<close> convex_hull_subset face_of_convex_hull_insert face_of_imp_subset hull_inc) moreover have "(\<exists>y v. (1 - ub) *\<^sub>R a + ub *\<^sub>R b = (1 - v) *\<^sub>R a + v *\<^sub>R y \<and> 0 \<le> v \<and> v \<le> 1 \<and> y \<in> F) \<and> (\<exists>x u. (1 - uc) *\<^sub>R a + uc *\<^sub>R c = (1 - u) *\<^sub>R a + u *\<^sub>R x \<and> 0 \<le> u \<and> u \<le> 1 \<and> x \<in> F)" if *: "(1 - ux) *\<^sub>R a + ux *\<^sub>R x \<in> open_segment ((1 - ub) *\<^sub>R a + ub *\<^sub>R b) ((1 - uc) *\<^sub>R a + uc *\<^sub>R c)" and "0 \<le> ub" "ub \<le> 1" "0 \<le> uc" "uc \<le> 1" "0 \<le> ux" "ux \<le> 1" and b: "b \<in> convex hull S" and c: "c \<in> convex hull S" and "x \<in> F" for b c ub uc ux x proof - obtain v where ne: "(1 - ub) *\<^sub>R a + ub *\<^sub>R b \<noteq> (1 - uc) *\<^sub>R a + uc *\<^sub>R c" and eq: "(1 - ux) *\<^sub>R a + ux *\<^sub>R x = (1 - v) *\<^sub>R ((1 - ub) *\<^sub>R a + ub *\<^sub>R b) + v *\<^sub>R ((1 - uc) *\<^sub>R a + uc *\<^sub>R c)" and "0 < v" "v < 1" using * by (auto simp: in_segment) then have 0: "((1 - ux) - ((1 - v) * (1 - ub) + v * (1 - uc))) *\<^sub>R a + (ux *\<^sub>R x - (((1 - v) * ub) *\<^sub>R b + (v * uc) *\<^sub>R c)) = 0" by (auto simp: algebra_simps) then have "((1 - ux) - ((1 - v) * (1 - ub) + v * (1 - uc))) *\<^sub>R a = ((1 - v) * ub) *\<^sub>R b + (v * uc) *\<^sub>R c + (-ux) *\<^sub>R x" by (auto simp: algebra_simps) then have "a \<in> affine hull S" if "1 - ux - ((1 - v) * (1 - ub) + v * (1 - uc)) \<noteq> 0" apply (rule face_of_convex_hull_aux) using b c that apply (auto simp: algebra_simps) using F convex_hull_subset_affine_hull face_of_imp_subset \<open>x \<in> F\<close> apply blast+ done then have "1 - ux - ((1 - v) * (1 - ub) + v * (1 - uc)) = 0" using a by blast with 0 have equx: "(1 - v) * ub + v * uc = ux" and uxx: "ux *\<^sub>R x = (((1 - v) * ub) *\<^sub>R b + (v * uc) *\<^sub>R c)" by auto (auto simp: algebra_simps) show ?thesis proof (cases "uc = 0") case True then show ?thesis using equx 0 \<open>0 \<le> ub\<close> \<open>ub \<le> 1\<close> \<open>v < 1\<close> \<open>x \<in> F\<close> apply (auto simp: algebra_simps) apply (rule_tac x=x in exI, simp) apply (rule_tac x=ub in exI, auto) apply (metis add.left_neutral diff_eq_eq less_irrefl mult.commute mult_cancel_right1 real_vector.scale_cancel_left real_vector.scale_left_diff_distrib) using \<open>x \<in> F\<close> \<open>uc \<le> 1\<close> apply blast done next case False show ?thesis proof (cases "ub = 0") case True then show ?thesis using equx 0 \<open>0 \<le> uc\<close> \<open>uc \<le> 1\<close> \<open>0 < v\<close> \<open>x \<in> F\<close> \<open>uc \<noteq> 0\<close> by (force simp: algebra_simps) next case False then have "0 < ub" "0 < uc" using \<open>uc \<noteq> 0\<close> \<open>0 \<le> ub\<close> \<open>0 \<le> uc\<close> by auto then have "ux \<noteq> 0" by (metis \<open>0 < v\<close> \<open>v < 1\<close> diff_ge_0_iff_ge dual_order.strict_implies_order equx leD le_add_same_cancel2 zero_le_mult_iff zero_less_mult_iff) have "b \<in> F \<and> c \<in> F" proof (cases "b = c") case True then show ?thesis by (metis \<open>ux \<noteq> 0\<close> equx real_vector.scale_cancel_left scaleR_add_left uxx \<open>x \<in> F\<close>) next case False have "x = (((1 - v) * ub) *\<^sub>R b + (v * uc) *\<^sub>R c) /\<^sub>R ux" by (metis \<open>ux \<noteq> 0\<close> uxx mult.commute right_inverse scaleR_one scaleR_scaleR) also have "... = (1 - v * uc / ux) *\<^sub>R b + (v * uc / ux) *\<^sub>R c" using \<open>ux \<noteq> 0\<close> equx apply (auto simp: algebra_simps divide_simps) by (metis add.commute add_diff_eq add_divide_distrib diff_add_cancel scaleR_add_left) finally have "x = (1 - v * uc / ux) *\<^sub>R b + (v * uc / ux) *\<^sub>R c" . then have "x \<in> open_segment b c" apply (simp add: in_segment \<open>b \<noteq> c\<close>) apply (rule_tac x="(v * uc) / ux" in exI) using \<open>0 \<le> ux\<close> \<open>ux \<noteq> 0\<close> \<open>0 < uc\<close> \<open>0 < v\<close> \<open>0 < ub\<close> \<open>v < 1\<close> equx apply (force simp: algebra_simps divide_simps) done then show ?thesis by (rule face_ofD [OF F _ b c \<open>x \<in> F\<close>]) qed with \<open>0 \<le> ub\<close> \<open>ub \<le> 1\<close> \<open>0 \<le> uc\<close> \<open>uc \<le> 1\<close> show ?thesis by blast qed qed qed moreover have "convex hull F = F" by (meson F convex_hull_eq face_of_imp_convex) ultimately show ?thesis unfolding face_of_def by (fastforce simp: convex_hull_insert_alt \<open>S \<noteq> {}\<close> \<open>F \<noteq> {}\<close>) qed qedqedlemma face_of_convex_hull_insert2: fixes a :: "'a :: euclidean_space" assumes S: "finite S" and a: "a \<notin> affine hull S" and F: "F face_of convex hull S" shows "convex hull (insert a F) face_of convex hull (insert a S)" by (metis F face_of_convex_hull_insert_eq [OF S a])proposition face_of_convex_hull_affine_independent: fixes S :: "'a::euclidean_space set" assumes "\<not> affine_dependent S" shows "(T face_of (convex hull S) \<longleftrightarrow> (\<exists>c. c \<subseteq> S \<and> T = convex hull c))" (is "?lhs = ?rhs")proof assume ?lhs then show ?rhs by (meson \<open>T face_of convex hull S\<close> aff_independent_finite assms face_of_convex_hull_subset finite_imp_compact)next assume ?rhs then obtain c where "c \<subseteq> S" and T: "T = convex hull c" by blast have "affine hull c \<inter> affine hull (S - c) = {}" apply (rule disjoint_affine_hull [OF assms \<open>c \<subseteq> S\<close>], auto) done then have "affine hull c \<inter> convex hull (S - c) = {}" using convex_hull_subset_affine_hull by fastforce then show ?lhs by (metis face_of_convex_hulls \<open>c \<subseteq> S\<close> aff_independent_finite assms T)qedlemma facet_of_convex_hull_affine_independent: fixes S :: "'a::euclidean_space set" assumes "\<not> affine_dependent S" shows "T facet_of (convex hull S) \<longleftrightarrow> T \<noteq> {} \<and> (\<exists>u. u \<in> S \<and> T = convex hull (S - {u}))" (is "?lhs = ?rhs")proof assume ?lhs then have "T face_of (convex hull S)" "T \<noteq> {}" and afft: "aff_dim T = aff_dim (convex hull S) - 1" by (auto simp: facet_of_def) then obtain c where "c \<subseteq> S" and c: "T = convex hull c" by (auto simp: face_of_convex_hull_affine_independent [OF assms]) then have affs: "aff_dim S = aff_dim c + 1" by (metis aff_dim_convex_hull afft eq_diff_eq) have "\<not> affine_dependent c" using \<open>c \<subseteq> S\<close> affine_dependent_subset assms by blast with affs have "card (S - c) = 1" apply (simp add: aff_dim_affine_independent [symmetric] aff_dim_convex_hull) by (metis aff_dim_affine_independent aff_independent_finite One_nat_def \<open>c \<subseteq> S\<close> add.commute add_diff_cancel_right' assms card_Diff_subset card_mono of_nat_1 of_nat_diff of_nat_eq_iff) then obtain u where u: "u \<in> S - c" by (metis DiffI \<open>c \<subseteq> S\<close> aff_independent_finite assms cancel_comm_monoid_add_class.diff_cancel card_Diff_subset subsetI subset_antisym zero_neq_one) then have u: "S = insert u c" by (metis Diff_subset \<open>c \<subseteq> S\<close> \<open>card (S - c) = 1\<close> card_1_singletonE double_diff insert_Diff insert_subset singletonD) have "T = convex hull (c - {u})" by (metis Diff_empty Diff_insert0 \<open>T facet_of convex hull S\<close> c facet_of_irrefl insert_absorb u) with \<open>T \<noteq> {}\<close> show ?rhs using c u by autonext assume ?rhs then obtain u where "T \<noteq> {}" "u \<in> S" and u: "T = convex hull (S - {u})" by (force simp: facet_of_def) then have "\<not> S \<subseteq> {u}" using \<open>T \<noteq> {}\<close> u by auto have [simp]: "aff_dim (convex hull (S - {u})) = aff_dim (convex hull S) - 1" using assms \<open>u \<in> S\<close> apply (simp add: aff_dim_convex_hull affine_dependent_def) apply (drule bspec, assumption) by (metis add_diff_cancel_right' aff_dim_insert insert_Diff [of u S]) show ?lhs apply (subst u) apply (simp add: \<open>\<not> S \<subseteq> {u}\<close> facet_of_def face_of_convex_hull_affine_independent [OF assms], blast) doneqedlemma facet_of_convex_hull_affine_independent_alt: fixes S :: "'a::euclidean_space set" shows "\<not>affine_dependent S \<Longrightarrow> (T facet_of (convex hull S) \<longleftrightarrow> 2 \<le> card S \<and> (\<exists>u. u \<in> S \<and> T = convex hull (S - {u})))"apply (simp add: facet_of_convex_hull_affine_independent)apply (auto simp: Set.subset_singleton_iff)apply (metis Diff_cancel Int_empty_right Int_insert_right_if1 aff_independent_finite card_eq_0_iff card_insert_if card_mono card_subset_eq convex_hull_eq_empty eq_iff equals0D finite_insert finite_subset inf.absorb_iff2 insert_absorb insert_not_empty not_less_eq_eq numeral_2_eq_2)donelemma segment_face_of: assumes "(closed_segment a b) face_of S" shows "a extreme_point_of S" "b extreme_point_of S"proof - have as: "{a} face_of S" by (metis (no_types) assms convex_hull_singleton empty_iff extreme_point_of_convex_hull_insert face_of_face face_of_singleton finite.emptyI finite.insertI insert_absorb insert_iff segment_convex_hull) moreover have "{b} face_of S" proof - have "b \<in> convex hull {a} \<or> b extreme_point_of convex hull {b, a}" by (meson extreme_point_of_convex_hull_insert finite.emptyI finite.insertI) moreover have "closed_segment a b = convex hull {b, a}" using closed_segment_commute segment_convex_hull by blast ultimately show ?thesis by (metis as assms face_of_face convex_hull_singleton empty_iff face_of_singleton insertE) qed ultimately show "a extreme_point_of S" "b extreme_point_of S" using face_of_singleton by blast+qedproposition Krein_Milman_frontier: fixes S :: "'a::euclidean_space set" assumes "convex S" "compact S" shows "S = convex hull (frontier S)" (is "?lhs = ?rhs")proof have "?lhs \<subseteq> convex hull {x. x extreme_point_of S}" using Krein_Milman_Minkowski assms by blast also have "... \<subseteq> ?rhs" apply (rule hull_mono) apply (auto simp: frontier_def extreme_point_not_in_interior) using closure_subset apply (force simp: extreme_point_of_def) done finally show "?lhs \<subseteq> ?rhs" .next have "?rhs \<subseteq> convex hull S" by (metis Diff_subset \<open>compact S\<close> closure_closed compact_eq_bounded_closed frontier_def hull_mono) also have "... \<subseteq> ?lhs" by (simp add: \<open>convex S\<close> hull_same) finally show "?rhs \<subseteq> ?lhs" .qedsubsection\<open>Polytopes\<close>definition%important polytope where "polytope S \<equiv> \<exists>v. finite v \<and> S = convex hull v"lemma polytope_translation_eq: "polytope (image (\<lambda>x. a + x) S) \<longleftrightarrow> polytope S"apply (simp add: polytope_def, safe)apply (metis convex_hull_translation finite_imageI translation_galois)by (metis convex_hull_translation finite_imageI)lemma polytope_linear_image: "\<lbrakk>linear f; polytope p\<rbrakk> \<Longrightarrow> polytope(image f p)" unfolding polytope_def using convex_hull_linear_image by blastlemma polytope_empty: "polytope {}" using convex_hull_empty polytope_def by blastlemma polytope_convex_hull: "finite S \<Longrightarrow> polytope(convex hull S)" using polytope_def by autolemma polytope_Times: "\<lbrakk>polytope S; polytope T\<rbrakk> \<Longrightarrow> polytope(S \<times> T)" unfolding polytope_def by (metis finite_cartesian_product convex_hull_Times)lemma face_of_polytope_polytope: fixes S :: "'a::euclidean_space set" shows "\<lbrakk>polytope S; F face_of S\<rbrakk> \<Longrightarrow> polytope F"unfolding polytope_defby (meson face_of_convex_hull_subset finite_imp_compact finite_subset)lemma finite_polytope_faces: fixes S :: "'a::euclidean_space set" assumes "polytope S" shows "finite {F. F face_of S}"proof - obtain v where "finite v" "S = convex hull v" using assms polytope_def by auto have "finite ((hull) convex ` {T. T \<subseteq> v})" by (simp add: \<open>finite v\<close>) moreover have "{F. F face_of S} \<subseteq> ((hull) convex ` {T. T \<subseteq> v})" by (metis (no_types, lifting) \<open>finite v\<close> \<open>S = convex hull v\<close> face_of_convex_hull_subset finite_imp_compact image_eqI mem_Collect_eq subsetI) ultimately show ?thesis by (blast intro: finite_subset)qedlemma finite_polytope_facets: assumes "polytope S" shows "finite {T. T facet_of S}"by (simp add: assms facet_of_def finite_polytope_faces)lemma polytope_scaling: assumes "polytope S" shows "polytope (image (\<lambda>x. c *\<^sub>R x) S)"by (simp add: assms polytope_linear_image)lemma polytope_imp_compact: fixes S :: "'a::real_normed_vector set" shows "polytope S \<Longrightarrow> compact S"by (metis finite_imp_compact_convex_hull polytope_def)lemma polytope_imp_convex: "polytope S \<Longrightarrow> convex S" by (metis convex_convex_hull polytope_def)lemma polytope_imp_closed: fixes S :: "'a::real_normed_vector set" shows "polytope S \<Longrightarrow> closed S"by (simp add: compact_imp_closed polytope_imp_compact)lemma polytope_imp_bounded: fixes S :: "'a::real_normed_vector set" shows "polytope S \<Longrightarrow> bounded S"by (simp add: compact_imp_bounded polytope_imp_compact)lemma polytope_interval: "polytope(cbox a b)" unfolding polytope_def by (meson closed_interval_as_convex_hull)lemma polytope_sing: "polytope {a}" using polytope_def by forcelemma face_of_polytope_insert: "\<lbrakk>polytope S; a \<notin> affine hull S; F face_of S\<rbrakk> \<Longrightarrow> F face_of convex hull (insert a S)" by (metis (no_types, lifting) affine_hull_convex_hull face_of_convex_hull_insert hull_insert polytope_def)proposition face_of_polytope_insert2: fixes a :: "'a :: euclidean_space" assumes "polytope S" "a \<notin> affine hull S" "F face_of S" shows "convex hull (insert a F) face_of convex hull (insert a S)"proof - obtain V where "finite V" "S = convex hull V" using assms by (auto simp: polytope_def) then have "convex hull (insert a F) face_of convex hull (insert a V)" using affine_hull_convex_hull assms face_of_convex_hull_insert2 by blast then show ?thesis by (metis \<open>S = convex hull V\<close> hull_insert)qedsubsection\<open>Polyhedra\<close>definition%important polyhedron where "polyhedron S \<equiv> \<exists>F. finite F \<and> S = \<Inter> F \<and> (\<forall>h \<in> F. \<exists>a b. a \<noteq> 0 \<and> h = {x. a \<bullet> x \<le> b})"lemma polyhedron_Int [intro,simp]: "\<lbrakk>polyhedron S; polyhedron T\<rbrakk> \<Longrightarrow> polyhedron (S \<inter> T)" apply (simp add: polyhedron_def, clarify) apply (rename_tac F G) apply (rule_tac x="F \<union> G" in exI, auto) donelemma polyhedron_UNIV [iff]: "polyhedron UNIV" unfolding polyhedron_def by (rule_tac x="{}" in exI) autolemma polyhedron_Inter [intro,simp]: "\<lbrakk>finite F; \<And>S. S \<in> F \<Longrightarrow> polyhedron S\<rbrakk> \<Longrightarrow> polyhedron(\<Inter>F)"by (induction F rule: finite_induct) autolemma polyhedron_empty [iff]: "polyhedron ({} :: 'a :: euclidean_space set)"proof - have "\<exists>a. a \<noteq> 0 \<and> (\<exists>b. {x. (SOME i. i \<in> Basis) \<bullet> x \<le> - 1} = {x. a \<bullet> x \<le> b})" by (rule_tac x="(SOME i. i \<in> Basis)" in exI) (force simp: SOME_Basis nonzero_Basis) moreover have "\<exists>a b. a \<noteq> 0 \<and> {x. - (SOME i. i \<in> Basis) \<bullet> x \<le> - 1} = {x. a \<bullet> x \<le> b}" apply (rule_tac x="-(SOME i. i \<in> Basis)" in exI) apply (rule_tac x="-1" in exI) apply (simp add: SOME_Basis nonzero_Basis) done ultimately show ?thesis unfolding polyhedron_def apply (rule_tac x="{{x. (SOME i. i \<in> Basis) \<bullet> x \<le> -1}, {x. -(SOME i. i \<in> Basis) \<bullet> x \<le> -1}}" in exI) apply force doneqedlemma polyhedron_halfspace_le: fixes a :: "'a :: euclidean_space" shows "polyhedron {x. a \<bullet> x \<le> b}"proof (cases "a = 0") case True then show ?thesis by autonext case False then show ?thesis unfolding polyhedron_def by (rule_tac x="{{x. a \<bullet> x \<le> b}}" in exI) autoqedlemma polyhedron_halfspace_ge: fixes a :: "'a :: euclidean_space" shows "polyhedron {x. a \<bullet> x \<ge> b}"using polyhedron_halfspace_le [of "-a" "-b"] by simplemma polyhedron_hyperplane: fixes a :: "'a :: euclidean_space" shows "polyhedron {x. a \<bullet> x = b}"proof - have "{x. a \<bullet> x = b} = {x. a \<bullet> x \<le> b} \<inter> {x. a \<bullet> x \<ge> b}" by force then show ?thesis by (simp add: polyhedron_halfspace_ge polyhedron_halfspace_le)qedlemma affine_imp_polyhedron: fixes S :: "'a :: euclidean_space set" shows "affine S \<Longrightarrow> polyhedron S"by (metis affine_hull_eq polyhedron_Inter polyhedron_hyperplane affine_hull_finite_intersection_hyperplanes [of S])lemma polyhedron_imp_closed: fixes S :: "'a :: euclidean_space set" shows "polyhedron S \<Longrightarrow> closed S"apply (simp add: polyhedron_def)using closed_halfspace_le by fastforcelemma polyhedron_imp_convex: fixes S :: "'a :: euclidean_space set" shows "polyhedron S \<Longrightarrow> convex S"apply (simp add: polyhedron_def)using convex_Inter convex_halfspace_le by fastforcelemma polyhedron_affine_hull: fixes S :: "'a :: euclidean_space set" shows "polyhedron(affine hull S)"by (simp add: affine_imp_polyhedron)subsection\<open>Canonical polyhedron representation making facial structure explicit\<close>proposition polyhedron_Int_affine: fixes S :: "'a :: euclidean_space set" shows "polyhedron S \<longleftrightarrow> (\<exists>F. finite F \<and> S = (affine hull S) \<inter> \<Inter>F \<and> (\<forall>h \<in> F. \<exists>a b. a \<noteq> 0 \<and> h = {x. a \<bullet> x \<le> b}))" (is "?lhs = ?rhs")proof assume ?lhs then show ?rhs apply (simp add: polyhedron_def) apply (erule ex_forward) using hull_subset apply force donenext assume ?rhs then show ?lhs apply clarify apply (erule ssubst) apply (force intro: polyhedron_affine_hull polyhedron_halfspace_le) doneqedproposition rel_interior_polyhedron_explicit: assumes "finite F" and seq: "S = affine hull S \<inter> \<Inter>F" and faceq: "\<And>h. h \<in> F \<Longrightarrow> a h \<noteq> 0 \<and> h = {x. a h \<bullet> x \<le> b h}" and psub: "\<And>F'. F' \<subset> F \<Longrightarrow> S \<subset> affine hull S \<inter> \<Inter>F'" shows "rel_interior S = {x \<in> S. \<forall>h \<in> F. a h \<bullet> x < b h}"proof - have rels: "\<And>x. x \<in> rel_interior S \<Longrightarrow> x \<in> S" by (meson IntE mem_rel_interior) moreover have "a i \<bullet> x < b i" if x: "x \<in> rel_interior S" and "i \<in> F" for x i proof - have fif: "F - {i} \<subset> F" using \<open>i \<in> F\<close> Diff_insert_absorb Diff_subset set_insert psubsetI by blast then have "S \<subset> affine hull S \<inter> \<Inter>(F - {i})" by (rule psub) then obtain z where ssub: "S \<subseteq> \<Inter>(F - {i})" and zint: "z \<in> \<Inter>(F - {i})" and "z \<notin> S" and zaff: "z \<in> affine hull S" by auto have "z \<noteq> x" using \<open>z \<notin> S\<close> rels x by blast have "z \<notin> affine hull S \<inter> \<Inter>F" using \<open>z \<notin> S\<close> seq by auto then have aiz: "a i \<bullet> z > b i" using faceq zint zaff by fastforce obtain e where "e > 0" "x \<in> S" and e: "ball x e \<inter> affine hull S \<subseteq> S" using x by (auto simp: mem_rel_interior_ball) then have ins: "\<And>y. \<lbrakk>norm (x - y) < e; y \<in> affine hull S\<rbrakk> \<Longrightarrow> y \<in> S" by (metis IntI subsetD dist_norm mem_ball) define \<xi> where "\<xi> = min (1/2) (e / 2 / norm(z - x))" have "norm (\<xi> *\<^sub>R x - \<xi> *\<^sub>R z) = norm (\<xi> *\<^sub>R (x - z))" by (simp add: \<xi>_def algebra_simps norm_mult) also have "... = \<xi> * norm (x - z)" using \<open>e > 0\<close> by (simp add: \<xi>_def) also have "... < e" using \<open>z \<noteq> x\<close> \<open>e > 0\<close> by (simp add: \<xi>_def min_def divide_simps norm_minus_commute) finally have lte: "norm (\<xi> *\<^sub>R x - \<xi> *\<^sub>R z) < e" . have \<xi>_aff: "\<xi> *\<^sub>R z + (1 - \<xi>) *\<^sub>R x \<in> affine hull S" by (metis \<open>x \<in> S\<close> add.commute affine_affine_hull diff_add_cancel hull_inc mem_affine zaff) have "\<xi> *\<^sub>R z + (1 - \<xi>) *\<^sub>R x \<in> S" apply (rule ins [OF _ \<xi>_aff]) apply (simp add: algebra_simps lte) done then obtain l where l: "0 < l" "l < 1" and ls: "(l *\<^sub>R z + (1 - l) *\<^sub>R x) \<in> S" apply (rule_tac l = \<xi> in that) using \<open>e > 0\<close> \<open>z \<noteq> x\<close> apply (auto simp: \<xi>_def) done then have i: "l *\<^sub>R z + (1 - l) *\<^sub>R x \<in> i" using seq \<open>i \<in> F\<close> by auto have "b i * l + (a i \<bullet> x) * (1 - l) < a i \<bullet> (l *\<^sub>R z + (1 - l) *\<^sub>R x)" using l by (simp add: algebra_simps aiz) also have "\<dots> \<le> b i" using i l using faceq mem_Collect_eq \<open>i \<in> F\<close> by blast finally have "(a i \<bullet> x) * (1 - l) < b i * (1 - l)" by (simp add: algebra_simps) with l show ?thesis by simp qed moreover have "x \<in> rel_interior S" if "x \<in> S" and less: "\<And>h. h \<in> F \<Longrightarrow> a h \<bullet> x < b h" for x proof - have 1: "\<And>h. h \<in> F \<Longrightarrow> x \<in> interior h" by (metis interior_halfspace_le mem_Collect_eq less faceq) have 2: "\<And>y. \<lbrakk>\<forall>h\<in>F. y \<in> interior h; y \<in> affine hull S\<rbrakk> \<Longrightarrow> y \<in> S" by (metis IntI Inter_iff contra_subsetD interior_subset seq) show ?thesis apply (simp add: rel_interior \<open>x \<in> S\<close>) apply (rule_tac x="\<Inter>h\<in>F. interior h" in exI) apply (auto simp: \<open>finite F\<close> open_INT 1 2) done qed ultimately show ?thesis by blastqedlemma polyhedron_Int_affine_parallel: fixes S :: "'a :: euclidean_space set" shows "polyhedron S \<longleftrightarrow> (\<exists>F. finite F \<and> S = (affine hull S) \<inter> (\<Inter>F) \<and> (\<forall>h \<in> F. \<exists>a b. a \<noteq> 0 \<and> h = {x. a \<bullet> x \<le> b} \<and> (\<forall>x \<in> affine hull S. (x + a) \<in> affine hull S)))" (is "?lhs = ?rhs")proof assume ?lhs then obtain F where "finite F" and seq: "S = (affine hull S) \<inter> \<Inter>F" and faces: "\<And>h. h \<in> F \<Longrightarrow> \<exists>a b. a \<noteq> 0 \<and> h = {x. a \<bullet> x \<le> b}" by (fastforce simp add: polyhedron_Int_affine) then obtain a b where ab: "\<And>h. h \<in> F \<Longrightarrow> a h \<noteq> 0 \<and> h = {x. a h \<bullet> x \<le> b h}" by metis show ?rhs proof - have "\<exists>a' b'. a' \<noteq> 0 \<and> affine hull S \<inter> {x. a' \<bullet> x \<le> b'} = affine hull S \<inter> h \<and> (\<forall>w \<in> affine hull S. (w + a') \<in> affine hull S)" if "h \<in> F" "\<not>(affine hull S \<subseteq> h)" for h proof - have "a h \<noteq> 0" and "h = {x. a h \<bullet> x \<le> b h}" "h \<inter> \<Inter>F = \<Inter>F" using \<open>h \<in> F\<close> ab by auto then have "(affine hull S) \<inter> {x. a h \<bullet> x \<le> b h} \<noteq> {}" by (metis (no_types) affine_hull_eq_empty inf.absorb_iff2 inf_assoc inf_bot_right inf_commute seq that(2)) moreover have "\<not> (affine hull S \<subseteq> {x. a h \<bullet> x \<le> b h})" using \<open>h = {x. a h \<bullet> x \<le> b h}\<close> that(2) by blast ultimately show ?thesis using affine_parallel_slice [of "affine hull S"] by (metis \<open>h = {x. a h \<bullet> x \<le> b h}\<close> affine_affine_hull) qed then obtain a b where ab: "\<And>h. \<lbrakk>h \<in> F; \<not> (affine hull S \<subseteq> h)\<rbrakk> \<Longrightarrow> a h \<noteq> 0 \<and> affine hull S \<inter> {x. a h \<bullet> x \<le> b h} = affine hull S \<inter> h \<and> (\<forall>w \<in> affine hull S. (w + a h) \<in> affine hull S)" by metis have seq2: "S = affine hull S \<inter> (\<Inter>h\<in>{h \<in> F. \<not> affine hull S \<subseteq> h}. {x. a h \<bullet> x \<le> b h})" by (subst seq) (auto simp: ab INT_extend_simps) show ?thesis apply (rule_tac x="(\<lambda>h. {x. a h \<bullet> x \<le> b h}) ` {h. h \<in> F \<and> \<not>(affine hull S \<subseteq> h)}" in exI) apply (intro conjI seq2) using \<open>finite F\<close> apply force using ab apply blast done qednext assume ?rhs then show ?lhs apply (simp add: polyhedron_Int_affine) by metisqedproposition polyhedron_Int_affine_parallel_minimal: fixes S :: "'a :: euclidean_space set" shows "polyhedron S \<longleftrightarrow> (\<exists>F. finite F \<and> S = (affine hull S) \<inter> (\<Inter>F) \<and> (\<forall>h \<in> F. \<exists>a b. a \<noteq> 0 \<and> h = {x. a \<bullet> x \<le> b} \<and> (\<forall>x \<in> affine hull S. (x + a) \<in> affine hull S)) \<and> (\<forall>F'. F' \<subset> F \<longrightarrow> S \<subset> (affine hull S) \<inter> (\<Inter>F')))" (is "?lhs = ?rhs")proof assume ?lhs then obtain f0 where f0: "finite f0" "S = (affine hull S) \<inter> (\<Inter>f0)" (is "?P f0") "\<forall>h \<in> f0. \<exists>a b. a \<noteq> 0 \<and> h = {x. a \<bullet> x \<le> b} \<and> (\<forall>x \<in> affine hull S. (x + a) \<in> affine hull S)" (is "?Q f0") by (force simp: polyhedron_Int_affine_parallel) define n where "n = (LEAST n. \<exists>F. card F = n \<and> finite F \<and> ?P F \<and> ?Q F)" have nf: "\<exists>F. card F = n \<and> finite F \<and> ?P F \<and> ?Q F" apply (simp add: n_def) apply (rule LeastI [where k = "card f0"]) using f0 apply auto done then obtain F where F: "card F = n" "finite F" and seq: "?P F" and aff: "?Q F" by blast then have "\<not> (finite g \<and> ?P g \<and> ?Q g)" if "card g < n" for g using that by (auto simp: n_def dest!: not_less_Least) then have *: "\<not> (?P g \<and> ?Q g)" if "g \<subset> F" for g using that \<open>finite F\<close> psubset_card_mono \<open>card F = n\<close> by (metis finite_Int inf.strict_order_iff) have 1: "\<And>F'. F' \<subset> F \<Longrightarrow> S \<subseteq> affine hull S \<inter> \<Inter>F'" by (subst seq) blast have 2: "\<And>F'. F' \<subset> F \<Longrightarrow> S \<noteq> affine hull S \<inter> \<Inter>F'" apply (frule *) by (metis aff subsetCE subset_iff_psubset_eq) show ?rhs by (metis \<open>finite F\<close> seq aff psubsetI 1 2)next assume ?rhs then show ?lhs by (auto simp: polyhedron_Int_affine_parallel)qedlemma polyhedron_Int_affine_minimal: fixes S :: "'a :: euclidean_space set" shows "polyhedron S \<longleftrightarrow> (\<exists>F. finite F \<and> S = (affine hull S) \<inter> \<Inter>F \<and> (\<forall>h \<in> F. \<exists>a b. a \<noteq> 0 \<and> h = {x. a \<bullet> x \<le> b}) \<and> (\<forall>F'. F' \<subset> F \<longrightarrow> S \<subset> (affine hull S) \<inter> \<Inter>F'))"apply (rule iffI) apply (force simp: polyhedron_Int_affine_parallel_minimal elim!: ex_forward)apply (auto simp: polyhedron_Int_affine elim!: ex_forward)doneproposition facet_of_polyhedron_explicit: assumes "finite F" and seq: "S = affine hull S \<inter> \<Inter>F" and faceq: "\<And>h. h \<in> F \<Longrightarrow> a h \<noteq> 0 \<and> h = {x. a h \<bullet> x \<le> b h}" and psub: "\<And>F'. F' \<subset> F \<Longrightarrow> S \<subset> affine hull S \<inter> \<Inter>F'" shows "c facet_of S \<longleftrightarrow> (\<exists>h. h \<in> F \<and> c = S \<inter> {x. a h \<bullet> x = b h})"proof (cases "S = {}") case True with psub show ?thesis by forcenext case False have "polyhedron S" apply (simp add: polyhedron_Int_affine) apply (rule_tac x=F in exI) using assms apply force done then have "convex S" by (rule polyhedron_imp_convex) with False rel_interior_eq_empty have "rel_interior S \<noteq> {}" by blast then obtain x where "x \<in> rel_interior S" by auto then obtain T where "open T" "x \<in> T" "x \<in> S" "T \<inter> affine hull S \<subseteq> S" by (force simp: mem_rel_interior) then have xaff: "x \<in> affine hull S" and xint: "x \<in> \<Inter>F" using seq hull_inc by auto have "rel_interior S = {x \<in> S. \<forall>h\<in>F. a h \<bullet> x < b h}" by (rule rel_interior_polyhedron_explicit [OF \<open>finite F\<close> seq faceq psub]) with \<open>x \<in> rel_interior S\<close> have [simp]: "\<And>h. h\<in>F \<Longrightarrow> a h \<bullet> x < b h" by blast have *: "(S \<inter> {x. a h \<bullet> x = b h}) facet_of S" if "h \<in> F" for h proof - have "S \<subset> affine hull S \<inter> \<Inter>(F - {h})" using psub that by (metis Diff_disjoint Diff_subset insert_disjoint(2) psubsetI) then obtain z where zaff: "z \<in> affine hull S" and zint: "z \<in> \<Inter>(F - {h})" and "z \<notin> S" by force then have "z \<noteq> x" "z \<notin> h" using seq \<open>x \<in> S\<close> by auto have "x \<in> h" using that xint by auto then have able: "a h \<bullet> x \<le> b h" using faceq that by blast also have "... < a h \<bullet> z" using \<open>z \<notin> h\<close> faceq [OF that] xint by auto finally have xltz: "a h \<bullet> x < a h \<bullet> z" . define l where "l = (b h - a h \<bullet> x) / (a h \<bullet> z - a h \<bullet> x)" define w where "w = (1 - l) *\<^sub>R x + l *\<^sub>R z" have "0 < l" "l < 1" using able xltz \<open>b h < a h \<bullet> z\<close> \<open>h \<in> F\<close> by (auto simp: l_def divide_simps) have awlt: "a i \<bullet> w < b i" if "i \<in> F" "i \<noteq> h" for i proof - have "(1 - l) * (a i \<bullet> x) < (1 - l) * b i" by (simp add: \<open>l < 1\<close> \<open>i \<in> F\<close>) moreover have "l * (a i \<bullet> z) \<le> l * b i" apply (rule mult_left_mono) apply (metis Diff_insert_absorb Inter_iff Set.set_insert \<open>h \<in> F\<close> faceq insertE mem_Collect_eq that zint) using \<open>0 < l\<close> apply simp done ultimately show ?thesis by (simp add: w_def algebra_simps) qed have weq: "a h \<bullet> w = b h" using xltz unfolding w_def l_def by (simp add: algebra_simps) (simp add: field_simps) have "w \<in> affine hull S" by (simp add: w_def mem_affine xaff zaff) moreover have "w \<in> \<Inter>F" using \<open>a h \<bullet> w = b h\<close> awlt faceq less_eq_real_def by blast ultimately have "w \<in> S" using seq by blast with weq have "S \<inter> {x. a h \<bullet> x = b h} \<noteq> {}" by blast moreover have "S \<inter> {x. a h \<bullet> x = b h} face_of S" apply (rule face_of_Int_supporting_hyperplane_le) apply (rule \<open>convex S\<close>) apply (subst (asm) seq) using faceq that apply fastforce done moreover have "affine hull (S \<inter> {x. a h \<bullet> x = b h}) = (affine hull S) \<inter> {x. a h \<bullet> x = b h}" proof show "affine hull (S \<inter> {x. a h \<bullet> x = b h}) \<subseteq> affine hull S \<inter> {x. a h \<bullet> x = b h}" apply (intro Int_greatest hull_mono Int_lower1) apply (metis affine_hull_eq affine_hyperplane hull_mono inf_le2) done next show "affine hull S \<inter> {x. a h \<bullet> x = b h} \<subseteq> affine hull (S \<inter> {x. a h \<bullet> x = b h})" proof fix y assume yaff: "y \<in> affine hull S \<inter> {y. a h \<bullet> y = b h}" obtain T where "0 < T" and T: "\<And>j. \<lbrakk>j \<in> F; j \<noteq> h\<rbrakk> \<Longrightarrow> T * (a j \<bullet> y - a j \<bullet> w) \<le> b j - a j \<bullet> w" proof (cases "F - {h} = {}") case True then show ?thesis by (rule_tac T=1 in that) auto next case False then obtain h' where h': "h' \<in> F - {h}" by auto let ?body = "(\<lambda>j. if 0 < a j \<bullet> y - a j \<bullet> w then (b j - a j \<bullet> w) / (a j \<bullet> y - a j \<bullet> w) else 1) ` (F - {h})" define inff where "inff = Inf ?body" from \<open>finite F\<close> have "finite ?body" by blast moreover from h' have "?body \<noteq> {}" by blast moreover have "j > 0" if "j \<in> ?body" for j proof - from that obtain x where "x \<in> F" and "x \<noteq> h" and *: "j = (if 0 < a x \<bullet> y - a x \<bullet> w then (b x - a x \<bullet> w) / (a x \<bullet> y - a x \<bullet> w) else 1)" by blast with awlt [of x] have "a x \<bullet> w < b x" by simp with * show ?thesis by simp qed ultimately have "0 < inff" by (simp_all add: finite_less_Inf_iff inff_def) moreover have "inff * (a j \<bullet> y - a j \<bullet> w) \<le> b j - a j \<bullet> w" if "j \<in> F" "j \<noteq> h" for j proof (cases "a j \<bullet> w < a j \<bullet> y") case True then have "inff \<le> (b j - a j \<bullet> w) / (a j \<bullet> y - a j \<bullet> w)" apply (simp add: inff_def) apply (rule cInf_le_finite) using \<open>finite F\<close> apply blast apply (simp add: that split: if_split_asm) done then show ?thesis using \<open>0 < inff\<close> awlt [OF that] mult_strict_left_mono by (fastforce simp add: algebra_simps divide_simps split: if_split_asm) next case False with \<open>0 < inff\<close> have "inff * (a j \<bullet> y - a j \<bullet> w) \<le> 0" by (simp add: mult_le_0_iff) also have "... < b j - a j \<bullet> w" by (simp add: awlt that) finally show ?thesis by simp qed ultimately show ?thesis by (blast intro: that) qed define c where "c = (1 - T) *\<^sub>R w + T *\<^sub>R y" have "(1 - T) *\<^sub>R w + T *\<^sub>R y \<in> j" if "j \<in> F" for j proof (cases "j = h") case True have "(1 - T) *\<^sub>R w + T *\<^sub>R y \<in> {x. a h \<bullet> x \<le> b h}" using weq yaff by (auto simp: algebra_simps) with True faceq [OF that] show ?thesis by metis next case False with T that have "(1 - T) *\<^sub>R w + T *\<^sub>R y \<in> {x. a j \<bullet> x \<le> b j}" by (simp add: algebra_simps) with faceq [OF that] show ?thesis by simp qed moreover have "(1 - T) *\<^sub>R w + T *\<^sub>R y \<in> affine hull S" apply (rule affine_affine_hull [simplified affine_alt, rule_format]) apply (simp add: \<open>w \<in> affine hull S\<close>) using yaff apply blast done ultimately have "c \<in> S" using seq by (force simp: c_def) moreover have "a h \<bullet> c = b h" using yaff by (force simp: c_def algebra_simps weq) ultimately have caff: "c \<in> affine hull (S \<inter> {y. a h \<bullet> y = b h})" by (simp add: hull_inc) have waff: "w \<in> affine hull (S \<inter> {y. a h \<bullet> y = b h})" using \<open>w \<in> S\<close> weq by (blast intro: hull_inc) have yeq: "y = (1 - inverse T) *\<^sub>R w + c /\<^sub>R T" using \<open>0 < T\<close> by (simp add: c_def algebra_simps) show "y \<in> affine hull (S \<inter> {y. a h \<bullet> y = b h})" by (metis yeq affine_affine_hull [simplified affine_alt, rule_format, OF waff caff]) qed qed ultimately show ?thesis apply (simp add: facet_of_def) apply (subst aff_dim_affine_hull [symmetric]) using \<open>b h < a h \<bullet> z\<close> zaff apply (force simp: aff_dim_affine_Int_hyperplane) done qed show ?thesis proof show "\<exists>h. h \<in> F \<and> c = S \<inter> {x. a h \<bullet> x = b h} \<Longrightarrow> c facet_of S" using * by blast next assume "c facet_of S" then have "c face_of S" "convex c" "c \<noteq> {}" and affc: "aff_dim c = aff_dim S - 1" by (auto simp: facet_of_def face_of_imp_convex) then obtain x where x: "x \<in> rel_interior c" by (force simp: rel_interior_eq_empty) then have "x \<in> c" by (meson subsetD rel_interior_subset) then have "x \<in> S" using \<open>c facet_of S\<close> facet_of_imp_subset by blast have rels: "rel_interior S = {x \<in> S. \<forall>h\<in>F. a h \<bullet> x < b h}" by (rule rel_interior_polyhedron_explicit [OF assms]) have "c \<noteq> S" using \<open>c facet_of S\<close> facet_of_irrefl by blast then have "x \<notin> rel_interior S" by (metis IntI empty_iff \<open>x \<in> c\<close> \<open>c \<noteq> S\<close> \<open>c face_of S\<close> face_of_disjoint_rel_interior) with rels \<open>x \<in> S\<close> obtain i where "i \<in> F" and i: "a i \<bullet> x \<ge> b i" by force have "x \<in> {u. a i \<bullet> u \<le> b i}" by (metis IntD2 InterE \<open>i \<in> F\<close> \<open>x \<in> S\<close> faceq seq) then have "a i \<bullet> x \<le> b i" by simp then have "a i \<bullet> x = b i" using i by auto have "c \<subseteq> S \<inter> {x. a i \<bullet> x = b i}" apply (rule subset_of_face_of [of _ S]) apply (simp add: "*" \<open>i \<in> F\<close> facet_of_imp_face_of) apply (simp add: \<open>c face_of S\<close> face_of_imp_subset) using \<open>a i \<bullet> x = b i\<close> \<open>x \<in> S\<close> x by blast then have cface: "c face_of (S \<inter> {x. a i \<bullet> x = b i})" by (meson \<open>c face_of S\<close> face_of_subset inf_le1) have con: "convex (S \<inter> {x. a i \<bullet> x = b i})" by (simp add: \<open>convex S\<close> convex_Int convex_hyperplane) show "\<exists>h. h \<in> F \<and> c = S \<inter> {x. a h \<bullet> x = b h}" apply (rule_tac x=i in exI) apply (simp add: \<open>i \<in> F\<close>) by (metis (no_types) * \<open>i \<in> F\<close> affc facet_of_def less_irrefl face_of_aff_dim_lt [OF con cface]) qedqedlemma face_of_polyhedron_subset_explicit: fixes S :: "'a :: euclidean_space set" assumes "finite F" and seq: "S = affine hull S \<inter> \<Inter>F" and faceq: "\<And>h. h \<in> F \<Longrightarrow> a h \<noteq> 0 \<and> h = {x. a h \<bullet> x \<le> b h}" and psub: "\<And>F'. F' \<subset> F \<Longrightarrow> S \<subset> affine hull S \<inter> \<Inter>F'" and c: "c face_of S" and "c \<noteq> {}" "c \<noteq> S" obtains h where "h \<in> F" "c \<subseteq> S \<inter> {x. a h \<bullet> x = b h}"proof - have "c \<subseteq> S" using \<open>c face_of S\<close> by (simp add: face_of_imp_subset) have "polyhedron S" apply (simp add: polyhedron_Int_affine) by (metis \<open>finite F\<close> faceq seq) then have "convex S" by (simp add: polyhedron_imp_convex) then have *: "(S \<inter> {x. a h \<bullet> x = b h}) face_of S" if "h \<in> F" for h apply (rule face_of_Int_supporting_hyperplane_le) using faceq seq that by fastforce have "rel_interior c \<noteq> {}" using c \<open>c \<noteq> {}\<close> face_of_imp_convex rel_interior_eq_empty by blast then obtain x where "x \<in> rel_interior c" by auto have rels: "rel_interior S = {x \<in> S. \<forall>h\<in>F. a h \<bullet> x < b h}" by (rule rel_interior_polyhedron_explicit [OF \<open>finite F\<close> seq faceq psub]) then have xnot: "x \<notin> rel_interior S" by (metis IntI \<open>x \<in> rel_interior c\<close> c \<open>c \<noteq> S\<close> contra_subsetD empty_iff face_of_disjoint_rel_interior rel_interior_subset) then have "x \<in> S" using \<open>c \<subseteq> S\<close> \<open>x \<in> rel_interior c\<close> rel_interior_subset by auto then have xint: "x \<in> \<Inter>F" using seq by blast have "F \<noteq> {}" using assms by (metis affine_Int affine_Inter affine_affine_hull ex_in_conv face_of_affine_trivial) then obtain i where "i \<in> F" "\<not> (a i \<bullet> x < b i)" using \<open>x \<in> S\<close> rels xnot by auto with xint have "a i \<bullet> x = b i" by (metis eq_iff mem_Collect_eq not_le Inter_iff faceq) have face: "S \<inter> {x. a i \<bullet> x = b i} face_of S" by (simp add: "*" \<open>i \<in> F\<close>) show ?thesis apply (rule_tac h = i in that) apply (rule \<open>i \<in> F\<close>) apply (rule subset_of_face_of [OF face \<open>c \<subseteq> S\<close>]) using \<open>a i \<bullet> x = b i\<close> \<open>x \<in> rel_interior c\<close> \<open>x \<in> S\<close> apply blast doneqedtext\<open>Initial part of proof duplicates that above\<close>proposition face_of_polyhedron_explicit: fixes S :: "'a :: euclidean_space set" assumes "finite F" and seq: "S = affine hull S \<inter> \<Inter>F" and faceq: "\<And>h. h \<in> F \<Longrightarrow> a h \<noteq> 0 \<and> h = {x. a h \<bullet> x \<le> b h}" and psub: "\<And>F'. F' \<subset> F \<Longrightarrow> S \<subset> affine hull S \<inter> \<Inter>F'" and c: "c face_of S" and "c \<noteq> {}" "c \<noteq> S" shows "c = \<Inter>{S \<inter> {x. a h \<bullet> x = b h} | h. h \<in> F \<and> c \<subseteq> S \<inter> {x. a h \<bullet> x = b h}}"proof - let ?ab = "\<lambda>h. {x. a h \<bullet> x = b h}" have "c \<subseteq> S" using \<open>c face_of S\<close> by (simp add: face_of_imp_subset) have "polyhedron S" apply (simp add: polyhedron_Int_affine) by (metis \<open>finite F\<close> faceq seq) then have "convex S" by (simp add: polyhedron_imp_convex) then have *: "(S \<inter> ?ab h) face_of S" if "h \<in> F" for h apply (rule face_of_Int_supporting_hyperplane_le) using faceq seq that by fastforce have "rel_interior c \<noteq> {}" using c \<open>c \<noteq> {}\<close> face_of_imp_convex rel_interior_eq_empty by blast then obtain z where z: "z \<in> rel_interior c" by auto have rels: "rel_interior S = {z \<in> S. \<forall>h\<in>F. a h \<bullet> z < b h}" by (rule rel_interior_polyhedron_explicit [OF \<open>finite F\<close> seq faceq psub]) then have xnot: "z \<notin> rel_interior S" by (metis IntI \<open>z \<in> rel_interior c\<close> c \<open>c \<noteq> S\<close> contra_subsetD empty_iff face_of_disjoint_rel_interior rel_interior_subset) then have "z \<in> S" using \<open>c \<subseteq> S\<close> \<open>z \<in> rel_interior c\<close> rel_interior_subset by auto with seq have xint: "z \<in> \<Inter>F" by blast have "open (\<Inter>h\<in>{h \<in> F. a h \<bullet> z < b h}. {w. a h \<bullet> w < b h})" by (auto simp: \<open>finite F\<close> open_halfspace_lt open_INT) then obtain e where "0 < e" "ball z e \<subseteq> (\<Inter>h\<in>{h \<in> F. a h \<bullet> z < b h}. {w. a h \<bullet> w < b h})" by (auto intro: openE [of _ z]) then have e: "\<And>h. \<lbrakk>h \<in> F; a h \<bullet> z < b h\<rbrakk> \<Longrightarrow> ball z e \<subseteq> {w. a h \<bullet> w < b h}" by blast have "c \<subseteq> (S \<inter> ?ab h) \<longleftrightarrow> z \<in> S \<inter> ?ab h" if "h \<in> F" for h proof show "z \<in> S \<inter> ?ab h \<Longrightarrow> c \<subseteq> S \<inter> ?ab h" apply (rule subset_of_face_of [of _ S]) using that \<open>c \<subseteq> S\<close> \<open>z \<in> rel_interior c\<close> using facet_of_polyhedron_explicit [OF \<open>finite F\<close> seq faceq psub] unfolding facet_of_def apply auto done next show "c \<subseteq> S \<inter> ?ab h \<Longrightarrow> z \<in> S \<inter> ?ab h" using \<open>z \<in> rel_interior c\<close> rel_interior_subset by force qed then have **: "{S \<inter> ?ab h | h. h \<in> F \<and> c \<subseteq> S \<and> c \<subseteq> ?ab h} = {S \<inter> ?ab h |h. h \<in> F \<and> z \<in> S \<inter> ?ab h}" by blast have bsub: "ball z e \<inter> affine hull \<Inter>{S \<inter> ?ab h |h. h \<in> F \<and> a h \<bullet> z = b h} \<subseteq> affine hull S \<inter> \<Inter>F \<inter> \<Inter>{?ab h |h. h \<in> F \<and> a h \<bullet> z = b h}" if "i \<in> F" and i: "a i \<bullet> z = b i" for i proof - have sub: "ball z e \<inter> \<Inter>{?ab h |h. h \<in> F \<and> a h \<bullet> z = b h} \<subseteq> j" if "j \<in> F" for j proof - have "a j \<bullet> z \<le> b j" using faceq that xint by auto then consider "a j \<bullet> z < b j" | "a j \<bullet> z = b j" by linarith then have "\<exists>G. G \<in> {?ab h |h. h \<in> F \<and> a h \<bullet> z = b h} \<and> ball z e \<inter> G \<subseteq> j" proof cases assume "a j \<bullet> z < b j" then have "ball z e \<inter> {x. a i \<bullet> x = b i} \<subseteq> j" using e [OF \<open>j \<in> F\<close>] faceq that by (fastforce simp: ball_def) then show ?thesis by (rule_tac x="{x. a i \<bullet> x = b i}" in exI) (force simp: \<open>i \<in> F\<close> i) next assume eq: "a j \<bullet> z = b j" with faceq that show ?thesis by (rule_tac x="{x. a j \<bullet> x = b j}" in exI) (fastforce simp add: \<open>j \<in> F\<close>) qed then show ?thesis by blast qed have 1: "affine hull \<Inter>{S \<inter> ?ab h |h. h \<in> F \<and> a h \<bullet> z = b h} \<subseteq> affine hull S" apply (rule hull_mono) using that \<open>z \<in> S\<close> by auto have 2: "affine hull \<Inter>{S \<inter> ?ab h |h. h \<in> F \<and> a h \<bullet> z = b h} \<subseteq> \<Inter>{?ab h |h. h \<in> F \<and> a h \<bullet> z = b h}" by (rule hull_minimal) (auto intro: affine_hyperplane) have 3: "ball z e \<inter> \<Inter>{?ab h |h. h \<in> F \<and> a h \<bullet> z = b h} \<subseteq> \<Inter>F" by (iprover intro: sub Inter_greatest) have *: "\<lbrakk>A \<subseteq> (B :: 'a set); A \<subseteq> C; E \<inter> C \<subseteq> D\<rbrakk> \<Longrightarrow> E \<inter> A \<subseteq> (B \<inter> D) \<inter> C" for A B C D E by blast show ?thesis by (intro * 1 2 3) qed have "\<exists>h. h \<in> F \<and> c \<subseteq> ?ab h" apply (rule face_of_polyhedron_subset_explicit [OF \<open>finite F\<close> seq faceq psub]) using assms by auto then have fac: "\<Inter>{S \<inter> ?ab h |h. h \<in> F \<and> c \<subseteq> S \<inter> ?ab h} face_of S" using * by (force simp: \<open>c \<subseteq> S\<close> intro: face_of_Inter) have red: "(\<And>a. P a \<Longrightarrow> T \<subseteq> S \<inter> \<Inter>{F x |x. P x}) \<Longrightarrow> T \<subseteq> \<Inter>{S \<inter> F x |x. P x}" for P T F by blast have "ball z e \<inter> affine hull \<Inter>{S \<inter> ?ab h |h. h \<in> F \<and> a h \<bullet> z = b h} \<subseteq> \<Inter>{S \<inter> ?ab h |h. h \<in> F \<and> a h \<bullet> z = b h}" apply (rule red) apply (metis seq bsub) done with \<open>0 < e\<close> have zinrel: "z \<in> rel_interior (\<Inter>{S \<inter> ?ab h |h. h \<in> F \<and> z \<in> S \<and> a h \<bullet> z = b h})" by (auto simp: mem_rel_interior_ball \<open>z \<in> S\<close>) show ?thesis apply (rule face_of_eq [OF c fac]) using z zinrel apply (force simp: **) doneqedsubsection\<open>More general corollaries from the explicit representation\<close>corollary facet_of_polyhedron: assumes "polyhedron S" and "c facet_of S" obtains a b where "a \<noteq> 0" "S \<subseteq> {x. a \<bullet> x \<le> b}" "c = S \<inter> {x. a \<bullet> x = b}"proof - obtain F where "finite F" and seq: "S = affine hull S \<inter> \<Inter>F" and faces: "\<And>h. h \<in> F \<Longrightarrow> \<exists>a b. a \<noteq> 0 \<and> h = {x. a \<bullet> x \<le> b}" and min: "\<And>F'. F' \<subset> F \<Longrightarrow> S \<subset> (affine hull S) \<inter> \<Inter>F'" using assms by (simp add: polyhedron_Int_affine_minimal) meson then obtain a b where ab: "\<And>h. h \<in> F \<Longrightarrow> a h \<noteq> 0 \<and> h = {x. a h \<bullet> x \<le> b h}" by metis obtain i where "i \<in> F" and c: "c = S \<inter> {x. a i \<bullet> x = b i}" using facet_of_polyhedron_explicit [OF \<open>finite F\<close> seq ab min] assms by force moreover have ssub: "S \<subseteq> {x. a i \<bullet> x \<le> b i}" apply (subst seq) using \<open>i \<in> F\<close> ab by auto ultimately show ?thesis by (rule_tac a = "a i" and b = "b i" in that) (simp_all add: ab)qedcorollary face_of_polyhedron: assumes "polyhedron S" and "c face_of S" and "c \<noteq> {}" and "c \<noteq> S" shows "c = \<Inter>{F. F facet_of S \<and> c \<subseteq> F}"proof - obtain F where "finite F" and seq: "S = affine hull S \<inter> \<Inter>F" and faces: "\<And>h. h \<in> F \<Longrightarrow> \<exists>a b. a \<noteq> 0 \<and> h = {x. a \<bullet> x \<le> b}" and min: "\<And>F'. F' \<subset> F \<Longrightarrow> S \<subset> (affine hull S) \<inter> \<Inter>F'" using assms by (simp add: polyhedron_Int_affine_minimal) meson then obtain a b where ab: "\<And>h. h \<in> F \<Longrightarrow> a h \<noteq> 0 \<and> h = {x. a h \<bullet> x \<le> b h}" by metis show ?thesis apply (subst face_of_polyhedron_explicit [OF \<open>finite F\<close> seq ab min]) apply (auto simp: assms facet_of_polyhedron_explicit [OF \<open>finite F\<close> seq ab min] cong: Collect_cong) doneqedlemma face_of_polyhedron_subset_facet: assumes "polyhedron S" and "c face_of S" and "c \<noteq> {}" and "c \<noteq> S" obtains F where "F facet_of S" "c \<subseteq> F"using face_of_polyhedron assmsby (metis (no_types, lifting) Inf_greatest antisym_conv face_of_imp_subset mem_Collect_eq)lemma exposed_face_of_polyhedron: assumes "polyhedron S" shows "F exposed_face_of S \<longleftrightarrow> F face_of S"proof show "F exposed_face_of S \<Longrightarrow> F face_of S" by (simp add: exposed_face_of_def)next assume "F face_of S" show "F exposed_face_of S" proof (cases "F = {} \<or> F = S") case True then show ?thesis using \<open>F face_of S\<close> exposed_face_of by blast next case False then have "{g. g facet_of S \<and> F \<subseteq> g} \<noteq> {}" by (metis Collect_empty_eq_bot \<open>F face_of S\<close> assms empty_def face_of_polyhedron_subset_facet) moreover have "\<And>T. \<lbrakk>T facet_of S; F \<subseteq> T\<rbrakk> \<Longrightarrow> T exposed_face_of S" by (metis assms exposed_face_of facet_of_imp_face_of facet_of_polyhedron) ultimately have "\<Inter>{fa. fa facet_of S \<and> F \<subseteq> fa} exposed_face_of S" by (metis (no_types, lifting) mem_Collect_eq exposed_face_of_Inter) then show ?thesis using False apply (subst face_of_polyhedron [OF assms \<open>F face_of S\<close>], auto) done qedqedlemma face_of_polyhedron_polyhedron: fixes S :: "'a :: euclidean_space set" assumes "polyhedron S" "c face_of S" shows "polyhedron c"by (metis assms face_of_imp_eq_affine_Int polyhedron_Int polyhedron_affine_hull polyhedron_imp_convex)lemma finite_polyhedron_faces: fixes S :: "'a :: euclidean_space set" assumes "polyhedron S" shows "finite {F. F face_of S}"proof - obtain F where "finite F" and seq: "S = affine hull S \<inter> \<Inter>F" and faces: "\<And>h. h \<in> F \<Longrightarrow> \<exists>a b. a \<noteq> 0 \<and> h = {x. a \<bullet> x \<le> b}" and min: "\<And>F'. F' \<subset> F \<Longrightarrow> S \<subset> (affine hull S) \<inter> \<Inter>F'" using assms by (simp add: polyhedron_Int_affine_minimal) meson then obtain a b where ab: "\<And>h. h \<in> F \<Longrightarrow> a h \<noteq> 0 \<and> h = {x. a h \<bullet> x \<le> b h}" by metis have "finite {\<Inter>{S \<inter> {x. a h \<bullet> x = b h} |h. h \<in> F'}| F'. F' \<in> Pow F}" by (simp add: \<open>finite F\<close>) moreover have "{F. F face_of S} - {{}, S} \<subseteq> {\<Inter>{S \<inter> {x. a h \<bullet> x = b h} |h. h \<in> F'}| F'. F' \<in> Pow F}" apply clarify apply (rename_tac c) apply (drule face_of_polyhedron_explicit [OF \<open>finite F\<close> seq ab min, simplified], simp_all) apply (erule ssubst) apply (rule_tac x="{h \<in> F. c \<subseteq> S \<inter> {x. a h \<bullet> x = b h}}" in exI, auto) done ultimately show ?thesis by (meson finite.emptyI finite.insertI finite_Diff2 finite_subset)qedlemma finite_polyhedron_exposed_faces: "polyhedron S \<Longrightarrow> finite {F. F exposed_face_of S}"using exposed_face_of_polyhedron finite_polyhedron_faces by fastforcelemma finite_polyhedron_extreme_points: fixes S :: "'a :: euclidean_space set" shows "polyhedron S \<Longrightarrow> finite {v. v extreme_point_of S}"apply (simp add: face_of_singleton [symmetric])apply (rule finite_subset [OF _ finite_vimageI [OF finite_polyhedron_faces]], auto)donelemma finite_polyhedron_facets: fixes S :: "'a :: euclidean_space set" shows "polyhedron S \<Longrightarrow> finite {F. F facet_of S}"unfolding facet_of_defby (blast intro: finite_subset [OF _ finite_polyhedron_faces])proposition rel_interior_of_polyhedron: fixes S :: "'a :: euclidean_space set" assumes "polyhedron S" shows "rel_interior S = S - \<Union>{F. F facet_of S}"proof - obtain F where "finite F" and seq: "S = affine hull S \<inter> \<Inter>F" and faces: "\<And>h. h \<in> F \<Longrightarrow> \<exists>a b. a \<noteq> 0 \<and> h = {x. a \<bullet> x \<le> b}" and min: "\<And>F'. F' \<subset> F \<Longrightarrow> S \<subset> (affine hull S) \<inter> \<Inter>F'" using assms by (simp add: polyhedron_Int_affine_minimal) meson then obtain a b where ab: "\<And>h. h \<in> F \<Longrightarrow> a h \<noteq> 0 \<and> h = {x. a h \<bullet> x \<le> b h}" by metis have facet: "(c facet_of S) \<longleftrightarrow> (\<exists>h. h \<in> F \<and> c = S \<inter> {x. a h \<bullet> x = b h})" for c by (rule facet_of_polyhedron_explicit [OF \<open>finite F\<close> seq ab min]) have rel: "rel_interior S = {x \<in> S. \<forall>h\<in>F. a h \<bullet> x < b h}" by (rule rel_interior_polyhedron_explicit [OF \<open>finite F\<close> seq ab min]) have "a h \<bullet> x < b h" if "x \<in> S" "h \<in> F" and xnot: "x \<notin> \<Union>{F. F facet_of S}" for x h proof - have "x \<in> \<Inter>F" using seq that by force with \<open>h \<in> F\<close> ab have "a h \<bullet> x \<le> b h" by auto then consider "a h \<bullet> x < b h" | "a h \<bullet> x = b h" by linarith then show ?thesis proof cases case 1 then show ?thesis . next case 2 have "Collect ((\<in>) x) \<notin> Collect ((\<in>) (\<Union>{A. A facet_of S}))" using xnot by fastforce then have "F \<notin> Collect ((\<in>) h)" using 2 \<open>x \<in> S\<close> facet by blast with \<open>h \<in> F\<close> have "\<Inter>F \<subseteq> S \<inter> {x. a h \<bullet> x = b h}" by blast with 2 that \<open>x \<in> \<Inter>F\<close> show ?thesis apply simp apply (drule_tac x="\<Inter>F" in spec) apply (simp add: facet) apply (drule_tac x=h in spec) using seq by auto qed qed moreover have "\<exists>h\<in>F. a h \<bullet> x \<ge> b h" if "x \<in> \<Union>{F. F facet_of S}" for x using that by (force simp: facet) ultimately show ?thesis by (force simp: rel)qedlemma rel_boundary_of_polyhedron: fixes S :: "'a :: euclidean_space set" assumes "polyhedron S" shows "S - rel_interior S = \<Union> {F. F facet_of S}"using facet_of_imp_subset by (fastforce simp add: rel_interior_of_polyhedron assms)lemma rel_frontier_of_polyhedron: fixes S :: "'a :: euclidean_space set" assumes "polyhedron S" shows "rel_frontier S = \<Union> {F. F facet_of S}"by (simp add: assms rel_frontier_def polyhedron_imp_closed rel_boundary_of_polyhedron)lemma rel_frontier_of_polyhedron_alt: fixes S :: "'a :: euclidean_space set" assumes "polyhedron S" shows "rel_frontier S = \<Union> {F. F face_of S \<and> (F \<noteq> S)}"apply (rule subset_antisym) apply (force simp: rel_frontier_of_polyhedron facet_of_def assms)using face_of_subset_rel_frontier by fastforcetext\<open>A characterization of polyhedra as having finitely many faces\<close>proposition polyhedron_eq_finite_exposed_faces: fixes S :: "'a :: euclidean_space set" shows "polyhedron S \<longleftrightarrow> closed S \<and> convex S \<and> finite {F. F exposed_face_of S}" (is "?lhs = ?rhs")proof assume ?lhs then show ?rhs by (auto simp: polyhedron_imp_closed polyhedron_imp_convex finite_polyhedron_exposed_faces)next assume ?rhs then have "closed S" "convex S" and fin: "finite {F. F exposed_face_of S}" by auto show ?lhs proof (cases "S = {}") case True then show ?thesis by auto next case False define F where "F = {h. h exposed_face_of S \<and> h \<noteq> {} \<and> h \<noteq> S}" have "finite F" by (simp add: fin F_def) have hface: "h face_of S" and "\<exists>a b. a \<noteq> 0 \<and> S \<subseteq> {x. a \<bullet> x \<le> b} \<and> h = S \<inter> {x. a \<bullet> x = b}" if "h \<in> F" for h using exposed_face_of F_def that by simp_all auto then obtain a b where ab: "\<And>h. h \<in> F \<Longrightarrow> a h \<noteq> 0 \<and> S \<subseteq> {x. a h \<bullet> x \<le> b h} \<and> h = S \<inter> {x. a h \<bullet> x = b h}" by metis have *: "False" if paff: "p \<in> affine hull S" and "p \<notin> S" and pint: "p \<in> \<Inter>{{x. a h \<bullet> x \<le> b h} |h. h \<in> F}" for p proof - have "rel_interior S \<noteq> {}" by (simp add: \<open>S \<noteq> {}\<close> \<open>convex S\<close> rel_interior_eq_empty) then obtain c where c: "c \<in> rel_interior S" by auto with rel_interior_subset have "c \<in> S" by blast have ccp: "closed_segment c p \<subseteq> affine hull S" by (meson affine_affine_hull affine_imp_convex c closed_segment_subset hull_subset paff rel_interior_subset subsetCE) obtain x where xcl: "x \<in> closed_segment c p" and "x \<in> S" and xnot: "x \<notin> rel_interior S" using connected_openin [of "closed_segment c p"] apply simp apply (drule_tac x="closed_segment c p \<inter> rel_interior S" in spec) apply (erule impE) apply (force simp: openin_rel_interior openin_Int intro: openin_subtopology_Int_subset [OF _ ccp]) apply (drule_tac x="closed_segment c p \<inter> (- S)" in spec) using rel_interior_subset \<open>closed S\<close> c \<open>p \<notin> S\<close> apply blast done then obtain \<mu> where "0 \<le> \<mu>" "\<mu> \<le> 1" and xeq: "x = (1 - \<mu>) *\<^sub>R c + \<mu> *\<^sub>R p" by (auto simp: in_segment) show False proof (cases "\<mu>=0 \<or> \<mu>=1") case True with xeq c xnot \<open>x \<in> S\<close> \<open>p \<notin> S\<close> show False by auto next case False then have xos: "x \<in> open_segment c p" using \<open>x \<in> S\<close> c open_segment_def that(2) xcl xnot by auto have xclo: "x \<in> closure S" using \<open>x \<in> S\<close> closure_subset by blast obtain d where "d \<noteq> 0" and dle: "\<And>y. y \<in> closure S \<Longrightarrow> d \<bullet> x \<le> d \<bullet> y" and dless: "\<And>y. y \<in> rel_interior S \<Longrightarrow> d \<bullet> x < d \<bullet> y" by (metis supporting_hyperplane_relative_frontier [OF \<open>convex S\<close> xclo xnot]) have sex: "S \<inter> {y. d \<bullet> y = d \<bullet> x} exposed_face_of S" by (simp add: \<open>closed S\<close> dle exposed_face_of_Int_supporting_hyperplane_ge [OF \<open>convex S\<close>]) have sne: "S \<inter> {y. d \<bullet> y = d \<bullet> x} \<noteq> {}" using \<open>x \<in> S\<close> by blast have sns: "S \<inter> {y. d \<bullet> y = d \<bullet> x} \<noteq> S" by (metis (mono_tags) Int_Collect c subsetD dless not_le order_refl rel_interior_subset) obtain h where "h \<in> F" "x \<in> h" apply (rule_tac h="S \<inter> {y. d \<bullet> y = d \<bullet> x}" in that) apply (simp_all add: F_def sex sne sns \<open>x \<in> S\<close>) done have abface: "{y. a h \<bullet> y = b h} face_of {y. a h \<bullet> y \<le> b h}" using hyperplane_face_of_halfspace_le by blast then have "c \<in> h" using face_ofD [OF abface xos] \<open>c \<in> S\<close> \<open>h \<in> F\<close> ab pint \<open>x \<in> h\<close> by blast with c have "h \<inter> rel_interior S \<noteq> {}" by blast then show False using \<open>h \<in> F\<close> F_def face_of_disjoint_rel_interior hface by auto qed qed have "S \<subseteq> affine hull S \<inter> \<Inter>{{x. a h \<bullet> x \<le> b h} |h. h \<in> F}" using ab by (auto simp: hull_subset) moreover have "affine hull S \<inter> \<Inter>{{x. a h \<bullet> x \<le> b h} |h. h \<in> F} \<subseteq> S" using * by blast ultimately have "S = affine hull S \<inter> \<Inter> {{x. a h \<bullet> x \<le> b h} |h. h \<in> F}" .. then show ?thesis apply (rule ssubst) apply (force intro: polyhedron_affine_hull polyhedron_halfspace_le simp: \<open>finite F\<close>) done qedqedcorollary polyhedron_eq_finite_faces: fixes S :: "'a :: euclidean_space set" shows "polyhedron S \<longleftrightarrow> closed S \<and> convex S \<and> finite {F. F face_of S}" (is "?lhs = ?rhs")proof assume ?lhs then show ?rhs by (simp add: finite_polyhedron_faces polyhedron_imp_closed polyhedron_imp_convex)next assume ?rhs then show ?lhs by (force simp: polyhedron_eq_finite_exposed_faces exposed_face_of intro: finite_subset)qedlemma polyhedron_linear_image_eq: fixes h :: "'a :: euclidean_space \<Rightarrow> 'b :: euclidean_space" assumes "linear h" "bij h" shows "polyhedron (h ` S) \<longleftrightarrow> polyhedron S"proof - have *: "{f. P f} = (image h) ` {f. P (h ` f)}" for P apply safe apply (rule_tac x="inv h ` x" in image_eqI) apply (auto simp: \<open>bij h\<close> bij_is_surj image_f_inv_f) done have "inj h" using bij_is_inj assms by blast then have injim: "inj_on ((`) h) A" for A by (simp add: inj_on_def inj_image_eq_iff) show ?thesis using \<open>linear h\<close> \<open>inj h\<close> apply (simp add: polyhedron_eq_finite_faces closed_injective_linear_image_eq) apply (simp add: * face_of_linear_image [of h _ S, symmetric] finite_image_iff injim) doneqedlemma polyhedron_negations: fixes S :: "'a :: euclidean_space set" shows "polyhedron S \<Longrightarrow> polyhedron(image uminus S)" by (subst polyhedron_linear_image_eq) (auto simp: bij_uminus intro!: linear_uminus)subsection\<open>Relation between polytopes and polyhedra\<close>proposition polytope_eq_bounded_polyhedron: fixes S :: "'a :: euclidean_space set" shows "polytope S \<longleftrightarrow> polyhedron S \<and> bounded S" (is "?lhs = ?rhs")proof assume ?lhs then show ?rhs by (simp add: finite_polytope_faces polyhedron_eq_finite_faces polytope_imp_closed polytope_imp_convex polytope_imp_bounded)next assume ?rhs then show ?lhs unfolding polytope_def apply (rule_tac x="{v. v extreme_point_of S}" in exI) apply (simp add: finite_polyhedron_extreme_points Krein_Milman_Minkowski compact_eq_bounded_closed polyhedron_imp_closed polyhedron_imp_convex) doneqedlemma polytope_Int: fixes S :: "'a :: euclidean_space set" shows "\<lbrakk>polytope S; polytope T\<rbrakk> \<Longrightarrow> polytope(S \<inter> T)"by (simp add: polytope_eq_bounded_polyhedron bounded_Int)lemma polytope_Int_polyhedron: fixes S :: "'a :: euclidean_space set" shows "\<lbrakk>polytope S; polyhedron T\<rbrakk> \<Longrightarrow> polytope(S \<inter> T)" by (simp add: bounded_Int polytope_eq_bounded_polyhedron)lemma polyhedron_Int_polytope: fixes S :: "'a :: euclidean_space set" shows "\<lbrakk>polyhedron S; polytope T\<rbrakk> \<Longrightarrow> polytope(S \<inter> T)" by (simp add: bounded_Int polytope_eq_bounded_polyhedron)lemma polytope_imp_polyhedron: fixes S :: "'a :: euclidean_space set" shows "polytope S \<Longrightarrow> polyhedron S" by (simp add: polytope_eq_bounded_polyhedron)lemma polytope_facet_exists: fixes p :: "'a :: euclidean_space set" assumes "polytope p" "0 < aff_dim p" obtains F where "F facet_of p"proof (cases "p = {}") case True with assms show ?thesis by autonext case False then obtain v where "v extreme_point_of p" using extreme_point_exists_convex by (blast intro: \<open>polytope p\<close> polytope_imp_compact polytope_imp_convex) then show ?thesis by (metis face_of_polyhedron_subset_facet polytope_imp_polyhedron aff_dim_sing all_not_in_conv assms face_of_singleton less_irrefl singletonI that)qedlemma polyhedron_interval [iff]: "polyhedron(cbox a b)"by (metis polytope_imp_polyhedron polytope_interval)lemma polyhedron_convex_hull: fixes S :: "'a :: euclidean_space set" shows "finite S \<Longrightarrow> polyhedron(convex hull S)"by (simp add: polytope_convex_hull polytope_imp_polyhedron)subsection\<open>Relative and absolute frontier of a polytope\<close>lemma rel_boundary_of_convex_hull: fixes S :: "'a::euclidean_space set" assumes "\<not> affine_dependent S" shows "(convex hull S) - rel_interior(convex hull S) = (\<Union>a\<in>S. convex hull (S - {a}))"proof - have "finite S" by (metis assms aff_independent_finite) then consider "card S = 0" | "card S = 1" | "2 \<le> card S" by arith then show ?thesis proof cases case 1 then have "S = {}" by (simp add: \<open>finite S\<close>) then show ?thesis by simp next case 2 show ?thesis by (auto intro: card_1_singletonE [OF \<open>card S = 1\<close>]) next case 3 with assms show ?thesis by (auto simp: polyhedron_convex_hull rel_boundary_of_polyhedron facet_of_convex_hull_affine_independent_alt \<open>finite S\<close>) qedqedproposition frontier_of_convex_hull: fixes S :: "'a::euclidean_space set" assumes "card S = Suc (DIM('a))" shows "frontier(convex hull S) = \<Union> {convex hull (S - {a}) | a. a \<in> S}"proof (cases "affine_dependent S") case True have [iff]: "finite S" using assms using card_infinite by force then have ccs: "closed (convex hull S)" by (simp add: compact_imp_closed finite_imp_compact_convex_hull) { fix x T assume "finite T" "T \<subseteq> S" "int (card T) \<le> aff_dim S + 1" "x \<in> convex hull T" then have "S \<noteq> T" using True \<open>finite S\<close> aff_dim_le_card affine_independent_iff_card by fastforce then obtain a where "a \<in> S" "a \<notin> T" using \<open>T \<subseteq> S\<close> by blast then have "x \<in> (\<Union>a\<in>S. convex hull (S - {a}))" using True affine_independent_iff_card [of S] apply simp apply (metis (no_types, hide_lams) Diff_eq_empty_iff Diff_insert0 \<open>a \<notin> T\<close> \<open>T \<subseteq> S\<close> \<open>x \<in> convex hull T\<close> hull_mono insert_Diff_single subsetCE) done } note * = this have 1: "convex hull S \<subseteq> (\<Union> a\<in>S. convex hull (S - {a}))" apply (subst caratheodory_aff_dim) apply (blast intro: *) done have 2: "\<Union>((\<lambda>a. convex hull (S - {a})) ` S) \<subseteq> convex hull S" by (rule Union_least) (metis (no_types, lifting) Diff_subset hull_mono imageE) show ?thesis using True apply (simp add: segment_convex_hull frontier_def) using interior_convex_hull_eq_empty [OF assms] apply (simp add: closure_closed [OF ccs]) apply (rule subset_antisym) using 1 apply blast using 2 apply blast donenext case False then have "frontier (convex hull S) = (convex hull S) - rel_interior(convex hull S)" apply (simp add: rel_boundary_of_convex_hull [symmetric] frontier_def) by (metis aff_independent_finite assms closure_convex_hull finite_imp_compact_convex_hull hull_hull interior_convex_hull_eq_empty rel_interior_nonempty_interior) also have "... = \<Union>{convex hull (S - {a}) |a. a \<in> S}" proof - have "convex hull S - rel_interior (convex hull S) = rel_frontier (convex hull S)" by (simp add: False aff_independent_finite polyhedron_convex_hull rel_boundary_of_polyhedron rel_frontier_of_polyhedron) then show ?thesis by (simp add: False rel_frontier_convex_hull_cases) qed finally show ?thesis .qedsubsection\<open>Special case of a triangle\<close>proposition frontier_of_triangle: fixes a :: "'a::euclidean_space" assumes "DIM('a) = 2" shows "frontier(convex hull {a,b,c}) = closed_segment a b \<union> closed_segment b c \<union> closed_segment c a" (is "?lhs = ?rhs")proof (cases "b = a \<or> c = a \<or> c = b") case True then show ?thesis by (auto simp: assms segment_convex_hull frontier_def empty_interior_convex_hull insert_commute card_insert_le_m1 hull_inc insert_absorb)next case False then have [simp]: "card {a, b, c} = Suc (DIM('a))" by (simp add: card_insert Set.insert_Diff_if assms) show ?thesis proof show "?lhs \<subseteq> ?rhs" using False by (force simp: segment_convex_hull frontier_of_convex_hull insert_Diff_if insert_commute split: if_split_asm) show "?rhs \<subseteq> ?lhs" using False apply (simp add: frontier_of_convex_hull segment_convex_hull) apply (intro conjI subsetI) apply (rule_tac X="convex hull {a,b}" in UnionI; force simp: Set.insert_Diff_if) apply (rule_tac X="convex hull {b,c}" in UnionI; force) apply (rule_tac X="convex hull {a,c}" in UnionI; force simp: insert_commute Set.insert_Diff_if) done qedqedcorollary inside_of_triangle: fixes a :: "'a::euclidean_space" assumes "DIM('a) = 2" shows "inside (closed_segment a b \<union> closed_segment b c \<union> closed_segment c a) = interior(convex hull {a,b,c})"by (metis assms frontier_of_triangle bounded_empty bounded_insert convex_convex_hull inside_frontier_eq_interior bounded_convex_hull)corollary interior_of_triangle: fixes a :: "'a::euclidean_space" assumes "DIM('a) = 2" shows "interior(convex hull {a,b,c}) = convex hull {a,b,c} - (closed_segment a b \<union> closed_segment b c \<union> closed_segment c a)" using interior_subset by (force simp: frontier_of_triangle [OF assms, symmetric] frontier_def Diff_Diff_Int)subsection\<open>Subdividing a cell complex\<close>lemma subdivide_interval: fixes x::real assumes "a < \<bar>x - y\<bar>" "0 < a" obtains n where "n \<in> \<int>" "x < n * a \<and> n * a < y \<or> y < n * a \<and> n * a < x"proof - consider "a + x < y" | "a + y < x" using assms by linarith then show ?thesis proof cases case 1 let ?n = "of_int (floor (x/a)) + 1" have x: "x < ?n * a" by (meson \<open>0 < a\<close> divide_less_eq floor_eq_iff) have "?n * a \<le> a + x" apply (simp add: algebra_simps) by (metis \<open>0 < a\<close> floor_correct less_irrefl nonzero_mult_div_cancel_left real_mult_le_cancel_iff2 times_divide_eq_right) also have "... < y" by (rule 1) finally have "?n * a < y" . with x show ?thesis using Ints_1 Ints_add Ints_of_int that by blast next case 2 let ?n = "of_int (floor (y/a)) + 1" have y: "y < ?n * a" by (meson \<open>0 < a\<close> divide_less_eq floor_eq_iff) have "?n * a \<le> a + y" apply (simp add: algebra_simps) by (metis \<open>0 < a\<close> floor_correct less_irrefl nonzero_mult_div_cancel_left real_mult_le_cancel_iff2 times_divide_eq_right) also have "... < x" by (rule 2) finally have "?n * a < x" . then show ?thesis using Ints_1 Ints_add Ints_of_int that y by blast qedqedlemma cell_subdivision_lemma: assumes "finite \<F>" and "\<And>X. X \<in> \<F> \<Longrightarrow> polytope X" and "\<And>X. X \<in> \<F> \<Longrightarrow> aff_dim X \<le> d" and "\<And>X Y. \<lbrakk>X \<in> \<F>; Y \<in> \<F>\<rbrakk> \<Longrightarrow> (X \<inter> Y) face_of X \<and> (X \<inter> Y) face_of Y" and "finite I" shows "\<exists>\<G>. \<Union>\<G> = \<Union>\<F> \<and> finite \<G> \<and> (\<forall>C \<in> \<G>. \<exists>D. D \<in> \<F> \<and> C \<subseteq> D) \<and> (\<forall>C \<in> \<F>. \<forall>x \<in> C. \<exists>D. D \<in> \<G> \<and> x \<in> D \<and> D \<subseteq> C) \<and> (\<forall>X \<in> \<G>. polytope X) \<and> (\<forall>X \<in> \<G>. aff_dim X \<le> d) \<and> (\<forall>X \<in> \<G>. \<forall>Y \<in> \<G>. X \<inter> Y face_of X \<and> X \<inter> Y face_of Y) \<and> (\<forall>X \<in> \<G>. \<forall>x \<in> X. \<forall>y \<in> X. \<forall>a b. (a,b) \<in> I \<longrightarrow> a \<bullet> x \<le> b \<and> a \<bullet> y \<le> b \<or> a \<bullet> x \<ge> b \<and> a \<bullet> y \<ge> b)" using \<open>finite I\<close>proof induction case empty then show ?case by (rule_tac x="\<F>" in exI) (auto simp: assms)next case (insert ab I) then obtain \<G> where eq: "\<Union>\<G> = \<Union>\<F>" and "finite \<G>" and sub1: "\<And>C. C \<in> \<G> \<Longrightarrow> \<exists>D. D \<in> \<F> \<and> C \<subseteq> D" and sub2: "\<And>C x. C \<in> \<F> \<and> x \<in> C \<Longrightarrow> \<exists>D. D \<in> \<G> \<and> x \<in> D \<and> D \<subseteq> C" and poly: "\<And>X. X \<in> \<G> \<Longrightarrow> polytope X" and aff: "\<And>X. X \<in> \<G> \<Longrightarrow> aff_dim X \<le> d" and face: "\<And>X Y. \<lbrakk>X \<in> \<G>; Y \<in> \<G>\<rbrakk> \<Longrightarrow> X \<inter> Y face_of X \<and> X \<inter> Y face_of Y" and I: "\<And>X x y a b. \<lbrakk>X \<in> \<G>; x \<in> X; y \<in> X; (a,b) \<in> I\<rbrakk> \<Longrightarrow> a \<bullet> x \<le> b \<and> a \<bullet> y \<le> b \<or> a \<bullet> x \<ge> b \<and> a \<bullet> y \<ge> b" by (auto simp: that) obtain a b where "ab = (a,b)" by fastforce let ?\<G> = "(\<lambda>X. X \<inter> {x. a \<bullet> x \<le> b}) ` \<G> \<union> (\<lambda>X. X \<inter> {x. a \<bullet> x \<ge> b}) ` \<G>" have eqInt: "(S \<inter> Collect P) \<inter> (T \<inter> Collect Q) = (S \<inter> T) \<inter> (Collect P \<inter> Collect Q)" for S T::"'a set" and P Q by blast show ?case proof (intro conjI exI) show "\<Union>?\<G> = \<Union>\<F>" by (force simp: eq [symmetric]) show "finite ?\<G>" using \<open>finite \<G>\<close> by force show "\<forall>X \<in> ?\<G>. polytope X" by (force simp: poly polytope_Int_polyhedron polyhedron_halfspace_le polyhedron_halfspace_ge) show "\<forall>X \<in> ?\<G>. aff_dim X \<le> d" by (auto; metis order_trans aff aff_dim_subset inf_le1) show "\<forall>X \<in> ?\<G>. \<forall>x \<in> X. \<forall>y \<in> X. \<forall>a b. (a,b) \<in> insert ab I \<longrightarrow> a \<bullet> x \<le> b \<and> a \<bullet> y \<le> b \<or> a \<bullet> x \<ge> b \<and> a \<bullet> y \<ge> b" using \<open>ab = (a, b)\<close> I by fastforce show "\<forall>X \<in> ?\<G>. \<forall>Y \<in> ?\<G>. X \<inter> Y face_of X \<and> X \<inter> Y face_of Y" by (auto simp: eqInt halfspace_Int_eq face_of_Int_Int face face_of_halfspace_le face_of_halfspace_ge) show "\<forall>C \<in> ?\<G>. \<exists>D. D \<in> \<F> \<and> C \<subseteq> D" using sub1 by force show "\<forall>C\<in>\<F>. \<forall>x\<in>C. \<exists>D. D \<in> ?\<G> \<and> x \<in> D \<and> D \<subseteq> C" proof (intro ballI) fix C z assume "C \<in> \<F>" "z \<in> C" with sub2 obtain D where D: "D \<in> \<G>" "z \<in> D" "D \<subseteq> C" by blast have "D \<in> \<G> \<and> z \<in> D \<inter> {x. a \<bullet> x \<le> b} \<and> D \<inter> {x. a \<bullet> x \<le> b} \<subseteq> C \<or> D \<in> \<G> \<and> z \<in> D \<inter> {x. a \<bullet> x \<ge> b} \<and> D \<inter> {x. a \<bullet> x \<ge> b} \<subseteq> C" using linorder_class.linear [of "a \<bullet> z" b] D by blast then show "\<exists>D. D \<in> ?\<G> \<and> z \<in> D \<and> D \<subseteq> C" by blast qed qedqedproposition cell_complex_subdivision_exists: fixes \<F> :: "'a::euclidean_space set set" assumes "0 < e" "finite \<F>" and poly: "\<And>X. X \<in> \<F> \<Longrightarrow> polytope X" and aff: "\<And>X. X \<in> \<F> \<Longrightarrow> aff_dim X \<le> d" and face: "\<And>X Y. \<lbrakk>X \<in> \<F>; Y \<in> \<F>\<rbrakk> \<Longrightarrow> X \<inter> Y face_of X \<and> X \<inter> Y face_of Y" obtains "\<F>'" where "finite \<F>'" "\<Union>\<F>' = \<Union>\<F>" "\<And>X. X \<in> \<F>' \<Longrightarrow> diameter X < e" "\<And>X. X \<in> \<F>' \<Longrightarrow> polytope X" "\<And>X. X \<in> \<F>' \<Longrightarrow> aff_dim X \<le> d" "\<And>X Y. \<lbrakk>X \<in> \<F>'; Y \<in> \<F>'\<rbrakk> \<Longrightarrow> X \<inter> Y face_of X \<and> X \<inter> Y face_of Y" "\<And>C. C \<in> \<F>' \<Longrightarrow> \<exists>D. D \<in> \<F> \<and> C \<subseteq> D" "\<And>C x. C \<in> \<F> \<and> x \<in> C \<Longrightarrow> \<exists>D. D \<in> \<F>' \<and> x \<in> D \<and> D \<subseteq> C"proof - have "bounded(\<Union>\<F>)" by (simp add: \<open>finite \<F>\<close> poly bounded_Union polytope_imp_bounded) then obtain B where "B > 0" and B: "\<And>x. x \<in> \<Union>\<F> \<Longrightarrow> norm x < B" by (meson bounded_pos_less) define C where "C \<equiv> {z \<in> \<int>. \<bar>z * e / 2 / real DIM('a)\<bar> \<le> B}" define I where "I \<equiv> \<Union>i \<in> Basis. \<Union>j \<in> C. { (i::'a, j * e / 2 / DIM('a)) }" have "finite C" using finite_int_segment [of "-B / (e / 2 / DIM('a))" "B / (e / 2 / DIM('a))"] apply (simp add: C_def) apply (erule rev_finite_subset) using \<open>0 < e\<close> apply (auto simp: divide_simps) done then have "finite I" by (simp add: I_def) obtain \<F>' where eq: "\<Union>\<F>' = \<Union>\<F>" and "finite \<F>'" and poly: "\<And>X. X \<in> \<F>' \<Longrightarrow> polytope X" and aff: "\<And>X. X \<in> \<F>' \<Longrightarrow> aff_dim X \<le> d" and face: "\<And>X Y. \<lbrakk>X \<in> \<F>'; Y \<in> \<F>'\<rbrakk> \<Longrightarrow> X \<inter> Y face_of X \<and> X \<inter> Y face_of Y" and I: "\<And>X x y a b. \<lbrakk>X \<in> \<F>'; x \<in> X; y \<in> X; (a,b) \<in> I\<rbrakk> \<Longrightarrow> a \<bullet> x \<le> b \<and> a \<bullet> y \<le> b \<or> a \<bullet> x \<ge> b \<and> a \<bullet> y \<ge> b" and sub1: "\<And>C. C \<in> \<F>' \<Longrightarrow> \<exists>D. D \<in> \<F> \<and> C \<subseteq> D" and sub2: "\<And>C x. C \<in> \<F> \<and> x \<in> C \<Longrightarrow> \<exists>D. D \<in> \<F>' \<and> x \<in> D \<and> D \<subseteq> C" apply (rule exE [OF cell_subdivision_lemma]) using assms \<open>finite I\<close> apply auto done show ?thesis proof (rule_tac \<F>'="\<F>'" in that) show "diameter X < e" if "X \<in> \<F>'" for X proof - have "diameter X \<le> e/2" proof (rule diameter_le) show "norm (x - y) \<le> e / 2" if "x \<in> X" "y \<in> X" for x y proof - have "norm x < B" "norm y < B" using B \<open>X \<in> \<F>'\<close> eq that by fastforce+ have "norm (x - y) \<le> (\<Sum>b\<in>Basis. \<bar>(x-y) \<bullet> b\<bar>)" by (rule norm_le_l1) also have "... \<le> of_nat (DIM('a)) * (e / 2 / DIM('a))" proof (rule sum_bounded_above) fix i::'a assume "i \<in> Basis" then have I': "\<And>z b. \<lbrakk>z \<in> C; b = z * e / (2 * real DIM('a))\<rbrakk> \<Longrightarrow> i \<bullet> x \<le> b \<and> i \<bullet> y \<le> b \<or> i \<bullet> x \<ge> b \<and> i \<bullet> y \<ge> b" using I \<open>X \<in> \<F>'\<close> that by (fastforce simp: I_def) show "\<bar>(x - y) \<bullet> i\<bar> \<le> e / 2 / real DIM('a)" proof (rule ccontr) assume "\<not> \<bar>(x - y) \<bullet> i\<bar> \<le> e / 2 / real DIM('a)" then have xyi: "\<bar>i \<bullet> x - i \<bullet> y\<bar> > e / 2 / real DIM('a)" by (simp add: inner_commute inner_diff_right) obtain n where "n \<in> \<int>" and n: "i \<bullet> x < n * (e / 2 / real DIM('a)) \<and> n * (e / 2 / real DIM('a)) < i \<bullet> y \<or> i \<bullet> y < n * (e / 2 / real DIM('a)) \<and> n * (e / 2 / real DIM('a)) < i \<bullet> x" using subdivide_interval [OF xyi] DIM_positive \<open>0 < e\<close> by (auto simp: zero_less_divide_iff) have "\<bar>i \<bullet> x\<bar> < B" by (metis \<open>i \<in> Basis\<close> \<open>norm x < B\<close> inner_commute norm_bound_Basis_lt) have "\<bar>i \<bullet> y\<bar> < B" by (metis \<open>i \<in> Basis\<close> \<open>norm y < B\<close> inner_commute norm_bound_Basis_lt) have *: "\<bar>n * e\<bar> \<le> B * (2 * real DIM('a))" if "\<bar>ix\<bar> < B" "\<bar>iy\<bar> < B" and ix: "ix * (2 * real DIM('a)) < n * e" and iy: "n * e < iy * (2 * real DIM('a))" for ix iy proof (rule abs_leI) have "iy * (2 * real DIM('a)) \<le> B * (2 * real DIM('a))" by (rule mult_right_mono) (use \<open>\<bar>iy\<bar> < B\<close> in linarith)+ then show "n * e \<le> B * (2 * real DIM('a))" using iy by linarith next have "- ix * (2 * real DIM('a)) \<le> B * (2 * real DIM('a))" by (rule mult_right_mono) (use \<open>\<bar>ix\<bar> < B\<close> in linarith)+ then show "- (n * e) \<le> B * (2 * real DIM('a))" using ix by linarith qed have "n \<in> C" using \<open>n \<in> \<int>\<close> n by (auto simp: C_def divide_simps intro: * \<open>\<bar>i \<bullet> x\<bar> < B\<close> \<open>\<bar>i \<bullet> y\<bar> < B\<close>) show False using I' [OF \<open>n \<in> C\<close> refl] n by auto qed qed also have "... = e / 2" by simp finally show ?thesis . qed qed (use \<open>0 < e\<close> in force) also have "... < e" by (simp add: \<open>0 < e\<close>) finally show ?thesis . qed qed (auto simp: eq poly aff face sub1 sub2 \<open>finite \<F>'\<close>)qedsubsection\<open>Simplexes\<close>text\<open>The notion of n-simplex for integer \<^term>\<open>n \<ge> -1\<close>\<close>definition%important simplex :: "int \<Rightarrow> 'a::euclidean_space set \<Rightarrow> bool" (infix "simplex" 50) where "n simplex S \<equiv> \<exists>C. \<not> affine_dependent C \<and> int(card C) = n + 1 \<and> S = convex hull C"lemma simplex: "n simplex S \<longleftrightarrow> (\<exists>C. finite C \<and> \<not> affine_dependent C \<and> int(card C) = n + 1 \<and> S = convex hull C)" by (auto simp add: simplex_def intro: aff_independent_finite)lemma simplex_convex_hull: "\<not> affine_dependent C \<and> int(card C) = n + 1 \<Longrightarrow> n simplex (convex hull C)" by (auto simp add: simplex_def)lemma convex_simplex: "n simplex S \<Longrightarrow> convex S" by (metis convex_convex_hull simplex_def)lemma compact_simplex: "n simplex S \<Longrightarrow> compact S" unfolding simplex using finite_imp_compact_convex_hull by blastlemma closed_simplex: "n simplex S \<Longrightarrow> closed S" by (simp add: compact_imp_closed compact_simplex)lemma simplex_imp_polytope: "n simplex S \<Longrightarrow> polytope S" unfolding simplex_def polytope_def using aff_independent_finite by blastlemma simplex_imp_polyhedron: "n simplex S \<Longrightarrow> polyhedron S" by (simp add: polytope_imp_polyhedron simplex_imp_polytope)lemma simplex_dim_ge: "n simplex S \<Longrightarrow> -1 \<le> n" by (metis (no_types, hide_lams) aff_dim_geq affine_independent_iff_card diff_add_cancel diff_diff_eq2 simplex_def)lemma simplex_empty [simp]: "n simplex {} \<longleftrightarrow> n = -1"proof assume "n simplex {}" then show "n = -1" unfolding simplex by (metis card_empty convex_hull_eq_empty diff_0 diff_eq_eq of_nat_0)next assume "n = -1" then show "n simplex {}" by (fastforce simp: simplex)qedlemma simplex_minus_1 [simp]: "-1 simplex S \<longleftrightarrow> S = {}" by (metis simplex cancel_comm_monoid_add_class.diff_cancel card_0_eq diff_minus_eq_add of_nat_eq_0_iff simplex_empty)lemma aff_dim_simplex: "n simplex S \<Longrightarrow> aff_dim S = n" by (metis simplex add.commute add_diff_cancel_left' aff_dim_convex_hull affine_independent_iff_card)lemma zero_simplex_sing: "0 simplex {a}" apply (simp add: simplex_def) by (metis affine_independent_1 card_empty card_insert_disjoint convex_hull_singleton empty_iff finite.emptyI)lemma simplex_sing [simp]: "n simplex {a} \<longleftrightarrow> n = 0" using aff_dim_simplex aff_dim_sing zero_simplex_sing by blastlemma simplex_zero: "0 simplex S \<longleftrightarrow> (\<exists>a. S = {a})"apply (auto simp: ) using aff_dim_eq_0 aff_dim_simplex by blastlemma one_simplex_segment: "a \<noteq> b \<Longrightarrow> 1 simplex closed_segment a b" apply (simp add: simplex_def) apply (rule_tac x="{a,b}" in exI) apply (auto simp: segment_convex_hull) donelemma simplex_segment_cases: "(if a = b then 0 else 1) simplex closed_segment a b" by (auto simp: one_simplex_segment)lemma simplex_segment: "\<exists>n. n simplex closed_segment a b" using simplex_segment_cases by metislemma polytope_lowdim_imp_simplex: assumes "polytope P" "aff_dim P \<le> 1" obtains n where "n simplex P"proof (cases "P = {}") case True then show ?thesis by (simp add: that)next case False then show ?thesis by (metis assms compact_convex_collinear_segment collinear_aff_dim polytope_imp_compact polytope_imp_convex simplex_segment_cases that)qedlemma simplex_insert_dimplus1: fixes n::int assumes "n simplex S" and a: "a \<notin> affine hull S" shows "(n+1) simplex (convex hull (insert a S))"proof - obtain C where C: "finite C" "\<not> affine_dependent C" "int(card C) = n+1" and S: "S = convex hull C" using assms unfolding simplex by force show ?thesis unfolding simplex proof (intro exI conjI) have "aff_dim S = n" using aff_dim_simplex assms(1) by blast moreover have "a \<notin> affine hull C" using S a affine_hull_convex_hull by blast moreover have "a \<notin> C" using S a hull_inc by fastforce ultimately show "\<not> affine_dependent (insert a C)" by (simp add: C S aff_dim_convex_hull aff_dim_insert affine_independent_iff_card) next have "a \<notin> C" using S a hull_inc by fastforce then show "int (card (insert a C)) = n + 1 + 1" by (simp add: C) next show "convex hull insert a S = convex hull (insert a C)" by (simp add: S convex_hull_insert_segments) qed (use C in auto)qedsubsection \<open>Simplicial complexes and triangulations\<close>definition%important simplicial_complex where "simplicial_complex \<C> \<equiv> finite \<C> \<and> (\<forall>S \<in> \<C>. \<exists>n. n simplex S) \<and> (\<forall>F S. S \<in> \<C> \<and> F face_of S \<longrightarrow> F \<in> \<C>) \<and> (\<forall>S S'. S \<in> \<C> \<and> S' \<in> \<C> \<longrightarrow> (S \<inter> S') face_of S \<and> (S \<inter> S') face_of S')"definition%important triangulation where "triangulation \<T> \<equiv> finite \<T> \<and> (\<forall>T \<in> \<T>. \<exists>n. n simplex T) \<and> (\<forall>T T'. T \<in> \<T> \<and> T' \<in> \<T> \<longrightarrow> (T \<inter> T') face_of T \<and> (T \<inter> T') face_of T')"subsection\<open>Refining a cell complex to a simplicial complex\<close>proposition convex_hull_insert_Int_eq: fixes z :: "'a :: euclidean_space" assumes z: "z \<in> rel_interior S" and T: "T \<subseteq> rel_frontier S" and U: "U \<subseteq> rel_frontier S" and "convex S" "convex T" "convex U" shows "convex hull (insert z T) \<inter> convex hull (insert z U) = convex hull (insert z (T \<inter> U))" (is "?lhs = ?rhs")proof show "?lhs \<subseteq> ?rhs" proof (cases "T={} \<or> U={}") case True then show ?thesis by auto next case False then have "T \<noteq> {}" "U \<noteq> {}" by auto have TU: "convex (T \<inter> U)" by (simp add: \<open>convex T\<close> \<open>convex U\<close> convex_Int) have "(\<Union>x\<in>T. closed_segment z x) \<inter> (\<Union>x\<in>U. closed_segment z x) \<subseteq> (if T \<inter> U = {} then {z} else \<Union>((closed_segment z) ` (T \<inter> U)))" (is "_ \<subseteq> ?IF") proof clarify fix x t u assume xt: "x \<in> closed_segment z t" and xu: "x \<in> closed_segment z u" and "t \<in> T" "u \<in> U" then have ne: "t \<noteq> z" "u \<noteq> z" using T U z unfolding rel_frontier_def by blast+ show "x \<in> ?IF" proof (cases "x = z") case True then show ?thesis by auto next case False have t: "t \<in> closure S" using T \<open>t \<in> T\<close> rel_frontier_def by auto have u: "u \<in> closure S" using U \<open>u \<in> U\<close> rel_frontier_def by auto show ?thesis proof (cases "t = u") case True then show ?thesis using \<open>t \<in> T\<close> \<open>u \<in> U\<close> xt by auto next case False have tnot: "t \<notin> closed_segment u z" proof - have "t \<in> closure S - rel_interior S" using T \<open>t \<in> T\<close> rel_frontier_def by blast then have "t \<notin> open_segment z u" by (meson DiffD2 rel_interior_closure_convex_segment [OF \<open>convex S\<close> z u] subsetD) then show ?thesis by (simp add: \<open>t \<noteq> u\<close> \<open>t \<noteq> z\<close> open_segment_commute open_segment_def) qed moreover have "u \<notin> closed_segment z t" using rel_interior_closure_convex_segment [OF \<open>convex S\<close> z t] \<open>u \<in> U\<close> \<open>u \<noteq> z\<close> U [unfolded rel_frontier_def] tnot by (auto simp: closed_segment_eq_open) ultimately have "\<not>(between (t,u) z | between (u,z) t | between (z,t) u)" if "x \<noteq> z" using that xt xu apply (simp add: between_mem_segment [symmetric]) by (metis between_commute between_trans_2 between_antisym) then have "\<not> collinear {t, z, u}" if "x \<noteq> z" by (auto simp: that collinear_between_cases between_commute) moreover have "collinear {t, z, x}" by (metis closed_segment_commute collinear_2 collinear_closed_segment collinear_triples ends_in_segment(1) insert_absorb insert_absorb2 xt) moreover have "collinear {z, x, u}" by (metis closed_segment_commute collinear_2 collinear_closed_segment collinear_triples ends_in_segment(1) insert_absorb insert_absorb2 xu) ultimately have False using collinear_3_trans [of t z x u] \<open>x \<noteq> z\<close> by blast then show ?thesis by metis qed qed qed then show ?thesis using False \<open>convex T\<close> \<open>convex U\<close> TU by (simp add: convex_hull_insert_segments hull_same split: if_split_asm) qed show "?rhs \<subseteq> ?lhs" by (metis inf_greatest hull_mono inf.cobounded1 inf.cobounded2 insert_mono)qedlemma simplicial_subdivision_aux: assumes "finite \<M>" and "\<And>C. C \<in> \<M> \<Longrightarrow> polytope C" and "\<And>C. C \<in> \<M> \<Longrightarrow> aff_dim C \<le> of_nat n" and "\<And>C F. \<lbrakk>C \<in> \<M>; F face_of C\<rbrakk> \<Longrightarrow> F \<in> \<M>" and "\<And>C1 C2. \<lbrakk>C1 \<in> \<M>; C2 \<in> \<M>\<rbrakk> \<Longrightarrow> C1 \<inter> C2 face_of C1 \<and> C1 \<inter> C2 face_of C2" shows "\<exists>\<T>. simplicial_complex \<T> \<and> (\<forall>K \<in> \<T>. aff_dim K \<le> of_nat n) \<and> \<Union>\<T> = \<Union>\<M> \<and> (\<forall>C \<in> \<M>. \<exists>F. finite F \<and> F \<subseteq> \<T> \<and> C = \<Union>F) \<and> (\<forall>K \<in> \<T>. \<exists>C. C \<in> \<M> \<and> K \<subseteq> C)" using assmsproof (induction n arbitrary: \<M> rule: less_induct) case (less n) then have poly\<M>: "\<And>C. C \<in> \<M> \<Longrightarrow> polytope C" and aff\<M>: "\<And>C. C \<in> \<M> \<Longrightarrow> aff_dim C \<le> of_nat n" and face\<M>: "\<And>C F. \<lbrakk>C \<in> \<M>; F face_of C\<rbrakk> \<Longrightarrow> F \<in> \<M>" and intface\<M>: "\<And>C1 C2. \<lbrakk>C1 \<in> \<M>; C2 \<in> \<M>\<rbrakk> \<Longrightarrow> C1 \<inter> C2 face_of C1 \<and> C1 \<inter> C2 face_of C2" by metis+ show ?case proof (cases "n \<le> 1") case True have "\<And>s. \<lbrakk>n \<le> 1; s \<in> \<M>\<rbrakk> \<Longrightarrow> \<exists>m. m simplex s" using poly\<M> aff\<M> by (force intro: polytope_lowdim_imp_simplex) then show ?thesis unfolding simplicial_complex_def apply (rule_tac x="\<M>" in exI) using True by (auto simp: less.prems) next case False define \<S> where "\<S> \<equiv> {C \<in> \<M>. aff_dim C < n}" have "finite \<S>" "\<And>C. C \<in> \<S> \<Longrightarrow> polytope C" "\<And>C. C \<in> \<S> \<Longrightarrow> aff_dim C \<le> int (n - 1)" "\<And>C F. \<lbrakk>C \<in> \<S>; F face_of C\<rbrakk> \<Longrightarrow> F \<in> \<S>" "\<And>C1 C2. \<lbrakk>C1 \<in> \<S>; C2 \<in> \<S>\<rbrakk> \<Longrightarrow> C1 \<inter> C2 face_of C1 \<and> C1 \<inter> C2 face_of C2" using less.prems apply (auto simp: \<S>_def) by (metis aff_dim_subset face_of_imp_subset less_le not_le) with less.IH [of "n-1" \<S>] False obtain \<U> where "simplicial_complex \<U>" and aff_dim\<U>: "\<And>K. K \<in> \<U> \<Longrightarrow> aff_dim K \<le> int (n - 1)" and "\<Union>\<U> = \<Union>\<S>" and fin\<U>: "\<And>C. C \<in> \<S> \<Longrightarrow> \<exists>F. finite F \<and> F \<subseteq> \<U> \<and> C = \<Union>F" and C\<U>: "\<And>K. K \<in> \<U> \<Longrightarrow> \<exists>C. C \<in> \<S> \<and> K \<subseteq> C" by auto then have "finite \<U>" and simpl\<U>: "\<And>S. S \<in> \<U> \<Longrightarrow> \<exists>n. n simplex S" and face\<U>: "\<And>F S. \<lbrakk>S \<in> \<U>; F face_of S\<rbrakk> \<Longrightarrow> F \<in> \<U>" and faceI\<U>: "\<And>S S'. \<lbrakk>S \<in> \<U>; S' \<in> \<U>\<rbrakk> \<Longrightarrow> (S \<inter> S') face_of S \<and> (S \<inter> S') face_of S'" by (auto simp: simplicial_complex_def) define \<N> where "\<N> \<equiv> {C \<in> \<M>. aff_dim C = n}" have "finite \<N>" by (simp add: \<N>_def less.prems(1)) have poly\<N>: "\<And>C. C \<in> \<N> \<Longrightarrow> polytope C" and convex\<N>: "\<And>C. C \<in> \<N> \<Longrightarrow> convex C" and closed\<N>: "\<And>C. C \<in> \<N> \<Longrightarrow> closed C" by (auto simp: \<N>_def poly\<M> polytope_imp_convex polytope_imp_closed) have in_rel_interior: "(SOME z. z \<in> rel_interior C) \<in> rel_interior C" if "C \<in> \<N>" for C using that poly\<M> polytope_imp_convex rel_interior_aff_dim some_in_eq by (fastforce simp: \<N>_def) have *: "\<exists>T. \<not> affine_dependent T \<and> card T \<le> n \<and> aff_dim K < n \<and> K = convex hull T" if "K \<in> \<U>" for K proof - obtain r where r: "r simplex K" using \<open>K \<in> \<U>\<close> simpl\<U> by blast have "r = aff_dim K" using \<open>r simplex K\<close> aff_dim_simplex by blast with r show ?thesis unfolding simplex_def using False \<open>\<And>K. K \<in> \<U> \<Longrightarrow> aff_dim K \<le> int (n - 1)\<close> that by fastforce qed have ahK_C_disjoint: "affine hull K \<inter> rel_interior C = {}" if "C \<in> \<N>" "K \<in> \<U>" "K \<subseteq> rel_frontier C" for C K proof - have "convex C" "closed C" by (auto simp: convex\<N> closed\<N> \<open>C \<in> \<N>\<close>) obtain F where F: "F face_of C" and "F \<noteq> C" "K \<subseteq> F" proof - obtain L where "L \<in> \<S>" "K \<subseteq> L" using \<open>K \<in> \<U>\<close> C\<U> by blast have "K \<le> rel_frontier C" by (simp add: \<open>K \<subseteq> rel_frontier C\<close>) also have "... \<le> C" by (simp add: \<open>closed C\<close> rel_frontier_def subset_iff) finally have "K \<subseteq> C" . have "L \<inter> C face_of C" using \<N>_def \<S>_def \<open>C \<in> \<N>\<close> \<open>L \<in> \<S>\<close> intface\<M> by auto moreover have "L \<inter> C \<noteq> C" using \<open>C \<in> \<N>\<close> \<open>L \<in> \<S>\<close> apply (clarsimp simp: \<N>_def \<S>_def) by (metis aff_dim_subset inf_le1 not_le) moreover have "K \<subseteq> L \<inter> C" using \<open>C \<in> \<N>\<close> \<open>L \<in> \<S>\<close> \<open>K \<subseteq> C\<close> \<open>K \<subseteq> L\<close> by (auto simp: \<N>_def \<S>_def) ultimately show ?thesis using that by metis qed have "affine hull F \<inter> rel_interior C = {}" by (rule affine_hull_face_of_disjoint_rel_interior [OF \<open>convex C\<close> F \<open>F \<noteq> C\<close>]) with hull_mono [OF \<open>K \<subseteq> F\<close>] show "affine hull K \<inter> rel_interior C = {}" by fastforce qed let ?\<T> = "(\<Union>C \<in> \<N>. \<Union>K \<in> \<U> \<inter> Pow (rel_frontier C). {convex hull (insert (SOME z. z \<in> rel_interior C) K)})" have "\<exists>\<T>. simplicial_complex \<T> \<and> (\<forall>K \<in> \<T>. aff_dim K \<le> of_nat n) \<and> (\<forall>C \<in> \<M>. \<exists>F. F \<subseteq> \<T> \<and> C = \<Union>F) \<and> (\<forall>K \<in> \<T>. \<exists>C. C \<in> \<M> \<and> K \<subseteq> C)" proof (rule exI, intro conjI ballI) show "simplicial_complex (\<U> \<union> ?\<T>)" unfolding simplicial_complex_def proof (intro conjI impI ballI allI) show "finite (\<U> \<union> ?\<T>)" using \<open>finite \<U>\<close> \<open>finite \<N>\<close> by simp show "\<exists>n. n simplex S" if "S \<in> \<U> \<union> ?\<T>" for S using that ahK_C_disjoint in_rel_interior simpl\<U> simplex_insert_dimplus1 by fastforce show "F \<in> \<U> \<union> ?\<T>" if S: "S \<in> \<U> \<union> ?\<T> \<and> F face_of S" for F S proof - have "F \<in> \<U>" if "S \<in> \<U>" using S face\<U> that by blast moreover have "F \<in> \<U> \<union> ?\<T>" if "F face_of S" "C \<in> \<N>" "K \<in> \<U>" and "K \<subseteq> rel_frontier C" and S: "S = convex hull insert (SOME z. z \<in> rel_interior C) K" for C K proof - let ?z = "SOME z. z \<in> rel_interior C" have "?z \<in> rel_interior C" by (simp add: in_rel_interior \<open>C \<in> \<N>\<close>) moreover obtain I where "\<not> affine_dependent I" "card I \<le> n" "aff_dim K < int n" "K = convex hull I" using * [OF \<open>K \<in> \<U>\<close>] by auto ultimately have "?z \<notin> affine hull I" using ahK_C_disjoint affine_hull_convex_hull that by blast have "compact I" "finite I" by (auto simp: \<open>\<not> affine_dependent I\<close> aff_independent_finite finite_imp_compact) moreover have "F face_of convex hull insert ?z I" by (metis S \<open>F face_of S\<close> \<open>K = convex hull I\<close> convex_hull_eq_empty convex_hull_insert_segments hull_hull) ultimately obtain J where "J \<subseteq> insert ?z I" "F = convex hull J" using face_of_convex_hull_subset [of "insert ?z I" F] by auto show ?thesis proof (cases "?z \<in> J") case True have "F \<in> (\<Union>K\<in>\<U> \<inter> Pow (rel_frontier C). {convex hull insert ?z K})" proof have "convex hull (J - {?z}) face_of K" by (metis True \<open>J \<subseteq> insert ?z I\<close> \<open>K = convex hull I\<close> \<open>\<not> affine_dependent I\<close> face_of_convex_hull_affine_independent subset_insert_iff) then have "convex hull (J - {?z}) \<in> \<U>" by (rule face\<U> [OF \<open>K \<in> \<U>\<close>]) moreover have "\<And>x. x \<in> convex hull (J - {?z}) \<Longrightarrow> x \<in> rel_frontier C" by (metis True \<open>J \<subseteq> insert ?z I\<close> \<open>K = convex hull I\<close> subsetD hull_mono subset_insert_iff that(4)) ultimately show "convex hull (J - {?z}) \<in> \<U> \<inter> Pow (rel_frontier C)" by auto let ?F = "convex hull insert ?z (convex hull (J - {?z}))" have "F \<subseteq> ?F" apply (clarsimp simp: \<open>F = convex hull J\<close>) by (metis True subsetD hull_mono hull_subset subset_insert_iff) moreover have "?F \<subseteq> F" apply (clarsimp simp: \<open>F = convex hull J\<close>) by (metis (no_types, lifting) True convex_hull_eq_empty convex_hull_insert_segments hull_hull insert_Diff) ultimately show "F \<in> {?F}" by auto qed with \<open>C\<in>\<N>\<close> show ?thesis by auto next case False then have "F \<in> \<U>" using face_of_convex_hull_affine_independent [OF \<open>\<not> affine_dependent I\<close>] by (metis Int_absorb2 Int_insert_right_if0 \<open>F = convex hull J\<close> \<open>J \<subseteq> insert ?z I\<close> \<open>K = convex hull I\<close> face\<U> inf_le2 \<open>K \<in> \<U>\<close>) then show "F \<in> \<U> \<union> ?\<T>" by blast qed qed ultimately show ?thesis using that by auto qed have "(S \<inter> S' face_of S) \<and> (S \<inter> S' face_of S')" if "S \<in> \<U> \<union> ?\<T>" "S' \<in> \<U> \<union> ?\<T>" for S S' proof - have symmy: "\<lbrakk>\<And>X Y. R X Y \<Longrightarrow> R Y X; \<And>X Y. \<lbrakk>X \<in> \<U>; Y \<in> \<U>\<rbrakk> \<Longrightarrow> R X Y; \<And>X Y. \<lbrakk>X \<in> \<U>; Y \<in> ?\<T>\<rbrakk> \<Longrightarrow> R X Y; \<And>X Y. \<lbrakk>X \<in> ?\<T>; Y \<in> ?\<T>\<rbrakk> \<Longrightarrow> R X Y\<rbrakk> \<Longrightarrow> R S S'" for R using that by (metis (no_types, lifting) Un_iff) show ?thesis proof (rule symmy) show "Y \<inter> X face_of Y \<and> Y \<inter> X face_of X" if "X \<inter> Y face_of X \<and> X \<inter> Y face_of Y" for X Y :: "'a set" by (simp add: inf_commute that) next show "X \<inter> Y face_of X \<and> X \<inter> Y face_of Y" if "X \<in> \<U>" and "Y \<in> \<U>" for X Y by (simp add: faceI\<U> that) next show "X \<inter> Y face_of X \<and> X \<inter> Y face_of Y" if XY: "X \<in> \<U>" "Y \<in> ?\<T>" for X Y proof - obtain C K where "C \<in> \<N>" "K \<in> \<U>" "K \<subseteq> rel_frontier C" and Y: "Y = convex hull insert (SOME z. z \<in> rel_interior C) K" using XY by blast have "convex C" by (simp add: \<open>C \<in> \<N>\<close> convex\<N>) have "K \<subseteq> C" by (metis DiffE \<open>C \<in> \<N>\<close> \<open>K \<subseteq> rel_frontier C\<close> closed\<N> closure_closed rel_frontier_def subset_iff) let ?z = "(SOME z. z \<in> rel_interior C)" have z: "?z \<in> rel_interior C" using \<open>C \<in> \<N>\<close> in_rel_interior by blast obtain D where "D \<in> \<S>" "X \<subseteq> D" using C\<U> \<open>X \<in> \<U>\<close> by blast have "D \<inter> rel_interior C = (C \<inter> D) \<inter> rel_interior C" using rel_interior_subset by blast also have "(C \<inter> D) \<inter> rel_interior C = {}" proof (rule face_of_disjoint_rel_interior) show "C \<inter> D face_of C" using \<N>_def \<S>_def \<open>C \<in> \<N>\<close> \<open>D \<in> \<S>\<close> intface\<M> by blast show "C \<inter> D \<noteq> C" by (metis (mono_tags, lifting) Int_lower2 \<N>_def \<S>_def \<open>C \<in> \<N>\<close> \<open>D \<in> \<S>\<close> aff_dim_subset mem_Collect_eq not_le) qed finally have DC: "D \<inter> rel_interior C = {}" . have eq: "X \<inter> convex hull (insert ?z K) = X \<inter> convex hull K" apply (rule Int_convex_hull_insert_rel_exterior [OF \<open>convex C\<close> \<open>K \<subseteq> C\<close> z]) using DC by (meson \<open>X \<subseteq> D\<close> disjnt_def disjnt_subset1) obtain I where I: "\<not> affine_dependent I" and Keq: "K = convex hull I" and [simp]: "convex hull K = K" using "*" \<open>K \<in> \<U>\<close> by force then have "?z \<notin> affine hull I" using ahK_C_disjoint \<open>C \<in> \<N>\<close> \<open>K \<in> \<U>\<close> \<open>K \<subseteq> rel_frontier C\<close> affine_hull_convex_hull z by blast have "X \<inter> K face_of K" by (simp add: \<open>K \<in> \<U>\<close> faceI\<U> \<open>X \<in> \<U>\<close>) also have "... face_of convex hull insert ?z K" by (metis I Keq \<open>?z \<notin> affine hull I\<close> aff_independent_finite convex_convex_hull face_of_convex_hull_insert face_of_refl hull_insert) finally have "X \<inter> K face_of convex hull insert ?z K" . then show ?thesis using "*" \<open>K \<in> \<U>\<close> faceI\<U> that(1) by (fastforce simp add: Y eq) qed next show "X \<inter> Y face_of X \<and> X \<inter> Y face_of Y" if XY: "X \<in> ?\<T>" "Y \<in> ?\<T>" for X Y proof - obtain C K D L where "C \<in> \<N>" "K \<in> \<U>" "K \<subseteq> rel_frontier C" and X: "X = convex hull insert (SOME z. z \<in> rel_interior C) K" and "D \<in> \<N>" "L \<in> \<U>" "L \<subseteq> rel_frontier D" and Y: "Y = convex hull insert (SOME z. z \<in> rel_interior D) L" using XY by blast let ?z = "(SOME z. z \<in> rel_interior C)" have z: "?z \<in> rel_interior C" using \<open>C \<in> \<N>\<close> in_rel_interior by blast have "convex C" by (simp add: \<open>C \<in> \<N>\<close> convex\<N>) have "convex K" using "*" \<open>K \<in> \<U>\<close> by blast have "convex L" by (meson \<open>L \<in> \<U>\<close> convex_simplex simpl\<U>) show ?thesis proof (cases "D=C") case True then have "L \<subseteq> rel_frontier C" using \<open>L \<subseteq> rel_frontier D\<close> by auto show ?thesis apply (simp add: X Y True) apply (simp add: convex_hull_insert_Int_eq [OF z] \<open>K \<subseteq> rel_frontier C\<close> \<open>L \<subseteq> rel_frontier C\<close> \<open>convex C\<close> \<open>convex K\<close> \<open>convex L\<close>) using face_of_polytope_insert2 by (metis "*" IntI \<open>C \<in> \<N>\<close> \<open>K \<in> \<U>\<close> \<open>L \<in> \<U>\<close>\<open>K \<subseteq> rel_frontier C\<close> \<open>L \<subseteq> rel_frontier C\<close> aff_independent_finite ahK_C_disjoint empty_iff faceI\<U> polytope_convex_hull z) next case False have "convex D" by (simp add: \<open>D \<in> \<N>\<close> convex\<N>) have "K \<subseteq> C" by (metis DiffE \<open>C \<in> \<N>\<close> \<open>K \<subseteq> rel_frontier C\<close> closed\<N> closure_closed rel_frontier_def subset_eq) have "L \<subseteq> D" by (metis DiffE \<open>D \<in> \<N>\<close> \<open>L \<subseteq> rel_frontier D\<close> closed\<N> closure_closed rel_frontier_def subset_eq) let ?w = "(SOME w. w \<in> rel_interior D)" have w: "?w \<in> rel_interior D" using \<open>D \<in> \<N>\<close> in_rel_interior by blast have "C \<inter> rel_interior D = (D \<inter> C) \<inter> rel_interior D" using rel_interior_subset by blast also have "(D \<inter> C) \<inter> rel_interior D = {}" proof (rule face_of_disjoint_rel_interior) show "D \<inter> C face_of D" using \<N>_def \<open>C \<in> \<N>\<close> \<open>D \<in> \<N>\<close> intface\<M> by blast have "D \<in> \<M> \<and> aff_dim D = int n" using \<N>_def \<open>D \<in> \<N>\<close> by blast moreover have "C \<in> \<M> \<and> aff_dim C = int n" using \<N>_def \<open>C \<in> \<N>\<close> by blast ultimately show "D \<inter> C \<noteq> D" by (metis False face_of_aff_dim_lt inf.idem inf_le1 intface\<M> not_le poly\<M> polytope_imp_convex) qed finally have CD: "C \<inter> (rel_interior D) = {}" . have zKC: "(convex hull insert ?z K) \<subseteq> C" by (metis DiffE \<open>C \<in> \<N>\<close> \<open>K \<subseteq> rel_frontier C\<close> closed\<N> closure_closed convex\<N> hull_minimal insert_subset rel_frontier_def rel_interior_subset subset_iff z) have eq: "convex hull (insert ?z K) \<inter> convex hull (insert ?w L) = convex hull (insert ?z K) \<inter> convex hull L" apply (rule Int_convex_hull_insert_rel_exterior [OF \<open>convex D\<close> \<open>L \<subseteq> D\<close> w]) using zKC CD apply (force simp: disjnt_def) done have ch_id: "convex hull K = K" "convex hull L = L" using "*" \<open>K \<in> \<U>\<close> \<open>L \<in> \<U>\<close> hull_same by auto have "convex C" by (simp add: \<open>C \<in> \<N>\<close> convex\<N>) have "convex hull (insert ?z K) \<inter> L = L \<inter> convex hull (insert ?z K)" by blast also have "... = convex hull K \<inter> L" proof (subst Int_convex_hull_insert_rel_exterior [OF \<open>convex C\<close> \<open>K \<subseteq> C\<close> z]) have "(C \<inter> D) \<inter> rel_interior C = {}" proof (rule face_of_disjoint_rel_interior) show "C \<inter> D face_of C" using \<N>_def \<open>C \<in> \<N>\<close> \<open>D \<in> \<N>\<close> intface\<M> by blast have "D \<in> \<M>" "aff_dim D = int n" using \<N>_def \<open>D \<in> \<N>\<close> by fastforce+ moreover have "C \<in> \<M>" "aff_dim C = int n" using \<N>_def \<open>C \<in> \<N>\<close> by fastforce+ ultimately have "aff_dim D + - 1 * aff_dim C \<le> 0" by fastforce then have "\<not> C face_of D" using False \<open>convex D\<close> face_of_aff_dim_lt by fastforce show "C \<inter> D \<noteq> C" using \<open>C \<in> \<M>\<close> \<open>D \<in> \<M>\<close> \<open>\<not> C face_of D\<close> intface\<M> by fastforce qed then have "D \<inter> rel_interior C = {}" by (metis inf.absorb_iff2 inf_assoc inf_sup_aci(1) rel_interior_subset) then show "disjnt L (rel_interior C)" by (meson \<open>L \<subseteq> D\<close> disjnt_def disjnt_subset1) next show "L \<inter> convex hull K = convex hull K \<inter> L" by force qed finally have chKL: "convex hull (insert ?z K) \<inter> L = convex hull K \<inter> L" . have "convex hull insert ?z K \<inter> convex hull L face_of K" by (simp add: \<open>K \<in> \<U>\<close> \<open>L \<in> \<U>\<close> ch_id chKL faceI\<U>) also have "... face_of convex hull insert ?z K" proof - obtain I where I: "\<not> affine_dependent I" "K = convex hull I" using * [OF \<open>K \<in> \<U>\<close>] by auto then have "\<And>a. a \<notin> rel_interior C \<or> a \<notin> affine hull I" using ahK_C_disjoint \<open>C \<in> \<N>\<close> \<open>K \<in> \<U>\<close> \<open>K \<subseteq> rel_frontier C\<close> affine_hull_convex_hull by blast then show ?thesis by (metis I affine_independent_insert face_of_convex_hull_affine_independent hull_insert subset_insertI z) qed finally have 1: "convex hull insert ?z K \<inter> convex hull L face_of convex hull insert ?z K" . have "convex hull insert ?z K \<inter> convex hull L face_of L" by (simp add: \<open>K \<in> \<U>\<close> \<open>L \<in> \<U>\<close> ch_id chKL faceI\<U>) also have "... face_of convex hull insert ?w L" proof - obtain I where I: "\<not> affine_dependent I" "L = convex hull I" using * [OF \<open>L \<in> \<U>\<close>] by auto then have "\<And>a. a \<notin> rel_interior D \<or> a \<notin> affine hull I" using \<open>D \<in> \<N>\<close> \<open>L \<in> \<U>\<close> \<open>L \<subseteq> rel_frontier D\<close> affine_hull_convex_hull ahK_C_disjoint by blast then show ?thesis by (metis I aff_independent_finite convex_convex_hull face_of_convex_hull_insert face_of_refl hull_insert w) qed finally have 2: "convex hull insert ?z K \<inter> convex hull L face_of convex hull insert ?w L" . show ?thesis by (simp add: X Y eq 1 2) qed qed qed qed then show "S \<inter> S' face_of S" "S \<inter> S' face_of S'" if "S \<in> \<U> \<union> ?\<T> \<and> S' \<in> \<U> \<union> ?\<T>" for S S' using that by auto qed show "\<exists>F \<subseteq> \<U> \<union> ?\<T>. C = \<Union>F" if "C \<in> \<M>" for C proof (cases "C \<in> \<S>") case True then show ?thesis by (meson UnCI fin\<U> subsetD subsetI) next case False then have "C \<in> \<N>" by (simp add: \<N>_def \<S>_def aff\<M> less_le that) let ?z = "SOME z. z \<in> rel_interior C" have z: "?z \<in> rel_interior C" using \<open>C \<in> \<N>\<close> in_rel_interior by blast let ?F = "\<Union>K \<in> \<U> \<inter> Pow (rel_frontier C). {convex hull (insert ?z K)}" have "?F \<subseteq> ?\<T>" using \<open>C \<in> \<N>\<close> by blast moreover have "C \<subseteq> \<Union>?F" proof fix x assume "x \<in> C" have "convex C" using \<open>C \<in> \<N>\<close> convex\<N> by blast have "bounded C" using \<open>C \<in> \<N>\<close> by (simp add: poly\<M> polytope_imp_bounded that) have "polytope C" using \<open>C \<in> \<N>\<close> poly\<N> by auto have "\<not> (?z = x \<and> C = {?z})" using \<open>C \<in> \<N>\<close> aff_dim_sing [of ?z] \<open>\<not> n \<le> 1\<close> by (force simp: \<N>_def) then obtain y where y: "y \<in> rel_frontier C" and xzy: "x \<in> closed_segment ?z y" and sub: "open_segment ?z y \<subseteq> rel_interior C" by (blast intro: segment_to_rel_frontier [OF \<open>convex C\<close> \<open>bounded C\<close> z \<open>x \<in> C\<close>]) then obtain F where "y \<in> F" "F face_of C" "F \<noteq> C" by (auto simp: rel_frontier_of_polyhedron_alt [OF polytope_imp_polyhedron [OF \<open>polytope C\<close>]]) then obtain \<G> where "finite \<G>" "\<G> \<subseteq> \<U>" "F = \<Union>\<G>" by (metis (mono_tags, lifting) \<S>_def \<open>C \<in> \<M>\<close> \<open>convex C\<close> aff\<M> face\<M> face_of_aff_dim_lt fin\<U> le_less_trans mem_Collect_eq not_less) then obtain K where "y \<in> K" "K \<in> \<G>" using \<open>y \<in> F\<close> by blast moreover have x: "x \<in> convex hull {?z,y}" using segment_convex_hull xzy by auto moreover have "convex hull {?z,y} \<subseteq> convex hull insert ?z K" by (metis (full_types) \<open>y \<in> K\<close> hull_mono empty_subsetI insertCI insert_subset) moreover have "K \<in> \<U>" using \<open>K \<in> \<G>\<close> \<open>\<G> \<subseteq> \<U>\<close> by blast moreover have "K \<subseteq> rel_frontier C" using \<open>F = \<Union>\<G>\<close> \<open>F \<noteq> C\<close> \<open>F face_of C\<close> \<open>K \<in> \<G>\<close> face_of_subset_rel_frontier by fastforce ultimately show "x \<in> \<Union>?F" by force qed moreover have "convex hull insert (SOME z. z \<in> rel_interior C) K \<subseteq> C" if "K \<in> \<U>" "K \<subseteq> rel_frontier C" for K proof (rule hull_minimal) show "insert (SOME z. z \<in> rel_interior C) K \<subseteq> C" using that \<open>C \<in> \<N>\<close> in_rel_interior rel_interior_subset by (force simp: closure_eq rel_frontier_def closed\<N>) show "convex C" by (simp add: \<open>C \<in> \<N>\<close> convex\<N>) qed then have "\<Union>?F \<subseteq> C" by auto ultimately show ?thesis by blast qed have "(\<exists>C. C \<in> \<M> \<and> L \<subseteq> C) \<and> aff_dim L \<le> int n" if "L \<in> \<U> \<union> ?\<T>" for L using that proof assume "L \<in> \<U>" then show ?thesis using C\<U> \<S>_def "*" by fastforce next assume "L \<in> ?\<T>" then obtain C K where "C \<in> \<N>" and L: "L = convex hull insert (SOME z. z \<in> rel_interior C) K" and K: "K \<in> \<U>" "K \<subseteq> rel_frontier C" by auto then have "convex hull C = C" by (meson convex\<N> convex_hull_eq) then have "convex C" by (metis (no_types) convex_convex_hull) have "rel_frontier C \<subseteq> C" by (metis DiffE closed\<N> \<open>C \<in> \<N>\<close> closure_closed rel_frontier_def subsetI) have "K \<subseteq> C" using K \<open>rel_frontier C \<subseteq> C\<close> by blast have "C \<in> \<M>" using \<N>_def \<open>C \<in> \<N>\<close> by auto moreover have "L \<subseteq> C" using K L \<open>C \<in> \<N>\<close> by (metis \<open>K \<subseteq> C\<close> \<open>convex hull C = C\<close> contra_subsetD hull_mono in_rel_interior insert_subset rel_interior_subset) ultimately show ?thesis using \<open>rel_frontier C \<subseteq> C\<close> \<open>L \<subseteq> C\<close> aff\<M> aff_dim_subset \<open>C \<in> \<M>\<close> dual_order.trans by blast qed then show "\<exists>C. C \<in> \<M> \<and> L \<subseteq> C" "aff_dim L \<le> int n" if "L \<in> \<U> \<union> ?\<T>" for L using that by auto qed then show ?thesis apply (rule ex_forward, safe) apply (meson Union_iff subsetCE, fastforce) by (meson infinite_super simplicial_complex_def) qedqedlemma simplicial_subdivision_of_cell_complex_lowdim: assumes "finite \<M>" and poly: "\<And>C. C \<in> \<M> \<Longrightarrow> polytope C" and face: "\<And>C1 C2. \<lbrakk>C1 \<in> \<M>; C2 \<in> \<M>\<rbrakk> \<Longrightarrow> C1 \<inter> C2 face_of C1 \<and> C1 \<inter> C2 face_of C2" and aff: "\<And>C. C \<in> \<M> \<Longrightarrow> aff_dim C \<le> d" obtains \<T> where "simplicial_complex \<T>" "\<And>K. K \<in> \<T> \<Longrightarrow> aff_dim K \<le> d" "\<Union>\<T> = \<Union>\<M>" "\<And>C. C \<in> \<M> \<Longrightarrow> \<exists>F. finite F \<and> F \<subseteq> \<T> \<and> C = \<Union>F" "\<And>K. K \<in> \<T> \<Longrightarrow> \<exists>C. C \<in> \<M> \<and> K \<subseteq> C"proof (cases "d \<ge> 0") case True then obtain n where n: "d = of_nat n" using zero_le_imp_eq_int by blast have "\<exists>\<T>. simplicial_complex \<T> \<and> (\<forall>K\<in>\<T>. aff_dim K \<le> int n) \<and> \<Union>\<T> = \<Union>(\<Union>C\<in>\<M>. {F. F face_of C}) \<and> (\<forall>C\<in>\<Union>C\<in>\<M>. {F. F face_of C}. \<exists>F. finite F \<and> F \<subseteq> \<T> \<and> C = \<Union>F) \<and> (\<forall>K\<in>\<T>. \<exists>C. C \<in> (\<Union>C\<in>\<M>. {F. F face_of C}) \<and> K \<subseteq> C)" proof (rule simplicial_subdivision_aux) show "finite (\<Union>C\<in>\<M>. {F. F face_of C})" using \<open>finite \<M>\<close> poly polyhedron_eq_finite_faces polytope_imp_polyhedron by fastforce show "polytope F" if "F \<in> (\<Union>C\<in>\<M>. {F. F face_of C})" for F using poly that face_of_polytope_polytope by blast show "aff_dim F \<le> int n" if "F \<in> (\<Union>C\<in>\<M>. {F. F face_of C})" for F using that by clarify (metis n aff_dim_subset aff face_of_imp_subset order_trans) show "F \<in> (\<Union>C\<in>\<M>. {F. F face_of C})" if "G \<in> (\<Union>C\<in>\<M>. {F. F face_of C})" and "F face_of G" for F G using that face_of_trans by blast next show "F1 \<inter> F2 face_of F1 \<and> F1 \<inter> F2 face_of F2" if "F1 \<in> (\<Union>C\<in>\<M>. {F. F face_of C})" and "F2 \<in> (\<Union>C\<in>\<M>. {F. F face_of C})" for F1 F2 using that by safe (meson face face_of_Int_subface)+ qed moreover have "\<Union>(\<Union>C\<in>\<M>. {F. F face_of C}) = \<Union>\<M>" using face_of_imp_subset face by blast ultimately show ?thesis apply clarify apply (rule that, assumption+) using n apply blast apply (simp_all add: poly face_of_refl polytope_imp_convex) using face_of_imp_subset by fastforcenext case False then have m1: "\<And>C. C \<in> \<M> \<Longrightarrow> aff_dim C = -1" by (metis aff aff_dim_empty_eq aff_dim_negative_iff dual_order.trans not_less) then have face\<M>: "\<And>F S. \<lbrakk>S \<in> \<M>; F face_of S\<rbrakk> \<Longrightarrow> F \<in> \<M>" by (metis aff_dim_empty face_of_empty) show ?thesis proof have "\<And>S. S \<in> \<M> \<Longrightarrow> \<exists>n. n simplex S" by (metis (no_types) m1 aff_dim_empty simplex_minus_1) then show "simplicial_complex \<M>" by (auto simp: simplicial_complex_def \<open>finite \<M>\<close> face intro: face\<M>) show "aff_dim K \<le> d" if "K \<in> \<M>" for K by (simp add: that aff) show "\<exists>F. finite F \<and> F \<subseteq> \<M> \<and> C = \<Union>F" if "C \<in> \<M>" for C using \<open>C \<in> \<M>\<close> equals0I by auto show "\<exists>C. C \<in> \<M> \<and> K \<subseteq> C" if "K \<in> \<M>" for K using \<open>K \<in> \<M>\<close> by blast qed autoqedproposition simplicial_subdivision_of_cell_complex: assumes "finite \<M>" and poly: "\<And>C. C \<in> \<M> \<Longrightarrow> polytope C" and face: "\<And>C1 C2. \<lbrakk>C1 \<in> \<M>; C2 \<in> \<M>\<rbrakk> \<Longrightarrow> C1 \<inter> C2 face_of C1 \<and> C1 \<inter> C2 face_of C2" obtains \<T> where "simplicial_complex \<T>" "\<Union>\<T> = \<Union>\<M>" "\<And>C. C \<in> \<M> \<Longrightarrow> \<exists>F. finite F \<and> F \<subseteq> \<T> \<and> C = \<Union>F" "\<And>K. K \<in> \<T> \<Longrightarrow> \<exists>C. C \<in> \<M> \<and> K \<subseteq> C" by (blast intro: simplicial_subdivision_of_cell_complex_lowdim [OF assms aff_dim_le_DIM])corollary fine_simplicial_subdivision_of_cell_complex: assumes "0 < e" "finite \<M>" and poly: "\<And>C. C \<in> \<M> \<Longrightarrow> polytope C" and face: "\<And>C1 C2. \<lbrakk>C1 \<in> \<M>; C2 \<in> \<M>\<rbrakk> \<Longrightarrow> C1 \<inter> C2 face_of C1 \<and> C1 \<inter> C2 face_of C2" obtains \<T> where "simplicial_complex \<T>" "\<And>K. K \<in> \<T> \<Longrightarrow> diameter K < e" "\<Union>\<T> = \<Union>\<M>" "\<And>C. C \<in> \<M> \<Longrightarrow> \<exists>F. finite F \<and> F \<subseteq> \<T> \<and> C = \<Union>F" "\<And>K. K \<in> \<T> \<Longrightarrow> \<exists>C. C \<in> \<M> \<and> K \<subseteq> C"proof - obtain \<N> where \<N>: "finite \<N>" "\<Union>\<N> = \<Union>\<M>" and diapoly: "\<And>X. X \<in> \<N> \<Longrightarrow> diameter X < e" "\<And>X. X \<in> \<N> \<Longrightarrow> polytope X" and "\<And>X Y. \<lbrakk>X \<in> \<N>; Y \<in> \<N>\<rbrakk> \<Longrightarrow> X \<inter> Y face_of X \<and> X \<inter> Y face_of Y" and \<N>covers: "\<And>C x. C \<in> \<M> \<and> x \<in> C \<Longrightarrow> \<exists>D. D \<in> \<N> \<and> x \<in> D \<and> D \<subseteq> C" and \<N>covered: "\<And>C. C \<in> \<N> \<Longrightarrow> \<exists>D. D \<in> \<M> \<and> C \<subseteq> D" by (blast intro: cell_complex_subdivision_exists [OF \<open>0 < e\<close> \<open>finite \<M>\<close> poly aff_dim_le_DIM face]) then obtain \<T> where \<T>: "simplicial_complex \<T>" "\<Union>\<T> = \<Union>\<N>" and \<T>covers: "\<And>C. C \<in> \<N> \<Longrightarrow> \<exists>F. finite F \<and> F \<subseteq> \<T> \<and> C = \<Union>F" and \<T>covered: "\<And>K. K \<in> \<T> \<Longrightarrow> \<exists>C. C \<in> \<N> \<and> K \<subseteq> C" using simplicial_subdivision_of_cell_complex [OF \<open>finite \<N>\<close>] by metis show ?thesis proof show "simplicial_complex \<T>" by (rule \<T>) show "diameter K < e" if "K \<in> \<T>" for K by (metis le_less_trans diapoly \<T>covered diameter_subset polytope_imp_bounded that) show "\<Union>\<T> = \<Union>\<M>" by (simp add: \<N>(2) \<open>\<Union>\<T> = \<Union>\<N>\<close>) show "\<exists>F. finite F \<and> F \<subseteq> \<T> \<and> C = \<Union>F" if "C \<in> \<M>" for C proof - { fix x assume "x \<in> C" then obtain D where "D \<in> \<T>" "x \<in> D" "D \<subseteq> C" using \<N>covers \<open>C \<in> \<M>\<close> \<T>covers by force then have "\<exists>X\<in>\<T> \<inter> Pow C. x \<in> X" using \<open>D \<in> \<T>\<close> \<open>D \<subseteq> C\<close> \<open>x \<in> D\<close> by blast } moreover have "finite (\<T> \<inter> Pow C)" using \<open>simplicial_complex \<T>\<close> simplicial_complex_def by auto ultimately show ?thesis by (rule_tac x="(\<T> \<inter> Pow C)" in exI) auto qed show "\<exists>C. C \<in> \<M> \<and> K \<subseteq> C" if "K \<in> \<T>" for K by (meson \<N>covered \<T>covered order_trans that) qedqedsubsection\<open>Some results on cell division with full-dimensional cells only\<close>lemma convex_Union_fulldim_cells: assumes "finite \<S>" and clo: "\<And>C. C \<in> \<S> \<Longrightarrow> closed C" and con: "\<And>C. C \<in> \<S> \<Longrightarrow> convex C" and eq: "\<Union>\<S> = U"and "convex U" shows "\<Union>{C \<in> \<S>. aff_dim C = aff_dim U} = U" (is "?lhs = U")proof - have "closed U" using \<open>finite \<S>\<close> clo eq by blast have "?lhs \<subseteq> U" using eq by blast moreover have "U \<subseteq> ?lhs" proof (cases "\<forall>C \<in> \<S>. aff_dim C = aff_dim U") case True then show ?thesis using eq by blast next case False have "closed ?lhs" by (simp add: \<open>finite \<S>\<close> clo closed_Union) moreover have "U \<subseteq> closure ?lhs" proof - have "U \<subseteq> closure(\<Inter>{U - C |C. C \<in> \<S> \<and> aff_dim C < aff_dim U})" proof (rule Baire [OF \<open>closed U\<close>]) show "countable {U - C |C. C \<in> \<S> \<and> aff_dim C < aff_dim U}" using \<open>finite \<S>\<close> uncountable_infinite by fastforce have "\<And>C. C \<in> \<S> \<Longrightarrow> openin (subtopology euclidean U) (U-C)" by (metis Sup_upper clo closed_limpt closedin_limpt eq openin_diff openin_subtopology_self) then show "openin (subtopology euclidean U) T \<and> U \<subseteq> closure T" if "T \<in> {U - C |C. C \<in> \<S> \<and> aff_dim C < aff_dim U}" for T using that dense_complement_convex_closed \<open>closed U\<close> \<open>convex U\<close> by auto qed also have "... \<subseteq> closure ?lhs" proof - obtain C where "C \<in> \<S>" "aff_dim C < aff_dim U" by (metis False Sup_upper aff_dim_subset eq eq_iff not_le) have "\<exists>X. X \<in> \<S> \<and> aff_dim X = aff_dim U \<and> x \<in> X" if "\<And>V. (\<exists>C. V = U - C \<and> C \<in> \<S> \<and> aff_dim C < aff_dim U) \<Longrightarrow> x \<in> V" for x proof - have "x \<in> U \<and> x \<in> \<Union>\<S>" using \<open>C \<in> \<S>\<close> \<open>aff_dim C < aff_dim U\<close> eq that by blast then show ?thesis by (metis Diff_iff Sup_upper Union_iff aff_dim_subset dual_order.order_iff_strict eq that) qed then show ?thesis by (auto intro!: closure_mono) qed finally show ?thesis . qed ultimately show ?thesis using closure_subset_eq by blast qed ultimately show ?thesis by blastqedproposition fine_triangular_subdivision_of_cell_complex: assumes "0 < e" "finite \<M>" and poly: "\<And>C. C \<in> \<M> \<Longrightarrow> polytope C" and aff: "\<And>C. C \<in> \<M> \<Longrightarrow> aff_dim C = d" and face: "\<And>C1 C2. \<lbrakk>C1 \<in> \<M>; C2 \<in> \<M>\<rbrakk> \<Longrightarrow> C1 \<inter> C2 face_of C1 \<and> C1 \<inter> C2 face_of C2" obtains \<T> where "triangulation \<T>" "\<And>k. k \<in> \<T> \<Longrightarrow> diameter k < e" "\<And>k. k \<in> \<T> \<Longrightarrow> aff_dim k = d" "\<Union>\<T> = \<Union>\<M>" "\<And>C. C \<in> \<M> \<Longrightarrow> \<exists>f. finite f \<and> f \<subseteq> \<T> \<and> C = \<Union>f" "\<And>k. k \<in> \<T> \<Longrightarrow> \<exists>C. C \<in> \<M> \<and> k \<subseteq> C"proof - obtain \<T> where "simplicial_complex \<T>" and dia\<T>: "\<And>K. K \<in> \<T> \<Longrightarrow> diameter K < e" and "\<Union>\<T> = \<Union>\<M>" and in\<M>: "\<And>C. C \<in> \<M> \<Longrightarrow> \<exists>F. finite F \<and> F \<subseteq> \<T> \<and> C = \<Union>F" and in\<T>: "\<And>K. K \<in> \<T> \<Longrightarrow> \<exists>C. C \<in> \<M> \<and> K \<subseteq> C" by (blast intro: fine_simplicial_subdivision_of_cell_complex [OF \<open>e > 0\<close> \<open>finite \<M>\<close> poly face]) let ?\<T> = "{K \<in> \<T>. aff_dim K = d}" show thesis proof show "triangulation ?\<T>" using \<open>simplicial_complex \<T>\<close> by (auto simp: triangulation_def simplicial_complex_def) show "diameter L < e" if "L \<in> {K \<in> \<T>. aff_dim K = d}" for L using that by (auto simp: dia\<T>) show "aff_dim L = d" if "L \<in> {K \<in> \<T>. aff_dim K = d}" for L using that by auto show "\<exists>F. finite F \<and> F \<subseteq> {K \<in> \<T>. aff_dim K = d} \<and> C = \<Union>F" if "C \<in> \<M>" for C proof - obtain F where "finite F" "F \<subseteq> \<T>" "C = \<Union>F" using in\<M> [OF \<open>C \<in> \<M>\<close>] by auto show ?thesis proof (intro exI conjI) show "finite {K \<in> F. aff_dim K = d}" by (simp add: \<open>finite F\<close>) show "{K \<in> F. aff_dim K = d} \<subseteq> {K \<in> \<T>. aff_dim K = d}" using \<open>F \<subseteq> \<T>\<close> by blast have "d = aff_dim C" by (simp add: aff that) moreover have "\<And>K. K \<in> F \<Longrightarrow> closed K \<and> convex K" using \<open>simplicial_complex \<T>\<close> \<open>F \<subseteq> \<T>\<close> unfolding simplicial_complex_def by (metis subsetCE \<open>F \<subseteq> \<T>\<close> closed_simplex convex_simplex) moreover have "convex (\<Union>F)" using \<open>C = \<Union>F\<close> poly polytope_imp_convex that by blast ultimately show "C = \<Union>{K \<in> F. aff_dim K = d}" by (simp add: convex_Union_fulldim_cells \<open>C = \<Union>F\<close> \<open>finite F\<close>) qed qed then show "\<Union>{K \<in> \<T>. aff_dim K = d} = \<Union>\<M>" by auto (meson in\<T> subsetCE) show "\<exists>C. C \<in> \<M> \<and> L \<subseteq> C" if "L \<in> {K \<in> \<T>. aff_dim K = d}" for L using that by (auto simp: in\<T>) qedqedend