| author | kleing | 
| Mon, 15 Oct 2001 21:04:32 +0200 | |
| changeset 11787 | 85b3735a51e1 | 
| parent 9907 | 473a6604da94 | 
| permissions | -rw-r--r-- | 
(* Title: ZF/InfDatatype.ML ID: $Id$ Author: Lawrence C Paulson, Cambridge University Computer Laboratory Copyright 1994 University of Cambridge Infinite-branching datatype definitions *) bind_thm ("fun_Limit_VfromE", [apply_funtype, InfCard_csucc RS InfCard_is_Limit] MRS transfer (the_context ()) Limit_VfromE |> standard); Goal "[| f: D -> Vfrom(A,csucc(K)); |D| le K; InfCard(K) |] \ \ ==> EX j. f: D -> Vfrom(A,j) & j < csucc(K)"; by (res_inst_tac [("x", "UN d:D. LEAST i. f`d : Vfrom(A,i)")] exI 1); by (rtac conjI 1); by (rtac le_UN_Ord_lt_csucc 2); by (rtac ballI 4 THEN etac fun_Limit_VfromE 4 THEN REPEAT_SOME assume_tac); by (fast_tac (claset() addEs [Least_le RS lt_trans1, ltE]) 2); by (rtac Pi_type 1); by (rename_tac "d" 2); by (etac fun_Limit_VfromE 2 THEN REPEAT_SOME assume_tac); by (subgoal_tac "f`d : Vfrom(A, LEAST i. f`d : Vfrom(A,i))" 1); by (fast_tac (claset() addEs [LeastI, ltE]) 2); by (eresolve_tac [[subset_refl, UN_upper] MRS Vfrom_mono RS subsetD] 1); by (assume_tac 1); qed "fun_Vcsucc_lemma"; Goal "[| D <= Vfrom(A,csucc(K)); |D| le K; InfCard(K) |] \ \ ==> EX j. D <= Vfrom(A,j) & j < csucc(K)"; by (asm_full_simp_tac (simpset() addsimps [subset_iff_id,fun_Vcsucc_lemma]) 1); qed "subset_Vcsucc"; (*Version for arbitrary index sets*) Goal "[| |D| le K; InfCard(K); D <= Vfrom(A,csucc(K)) |] ==> \ \ D -> Vfrom(A,csucc(K)) <= Vfrom(A,csucc(K))"; by (safe_tac (claset() addSDs [fun_Vcsucc_lemma, subset_Vcsucc])); by (resolve_tac [Vfrom RS ssubst] 1); by (dtac fun_is_rel 1); (*This level includes the function, and is below csucc(K)*) by (res_inst_tac [("a1", "succ(succ(j Un ja))")] (UN_I RS UnI2) 1); by (eresolve_tac [subset_trans RS PowI] 2); by (fast_tac (claset() addIs [Pair_in_Vfrom, Vfrom_UnI1, Vfrom_UnI2]) 2); by (REPEAT (ares_tac [ltD, InfCard_csucc, InfCard_is_Limit, Limit_has_succ, Un_least_lt] 1)); qed "fun_Vcsucc"; Goal "[| f: D -> Vfrom(A, csucc(K)); |D| le K; InfCard(K); \ \ D <= Vfrom(A,csucc(K)) |] \ \ ==> f: Vfrom(A,csucc(K))"; by (REPEAT (ares_tac [fun_Vcsucc RS subsetD] 1)); qed "fun_in_Vcsucc"; (*Remove <= from the rule above*) bind_thm ("fun_in_Vcsucc'", subsetI RSN (4, fun_in_Vcsucc)); (** Version where K itself is the index set **) Goal "InfCard(K) ==> K -> Vfrom(A,csucc(K)) <= Vfrom(A,csucc(K))"; by (forward_tac [InfCard_is_Card RS Card_is_Ord] 1); by (REPEAT (ares_tac [fun_Vcsucc, Ord_cardinal_le, i_subset_Vfrom, lt_csucc RS leI RS le_imp_subset RS subset_trans] 1)); qed "Card_fun_Vcsucc"; Goal "[| f: K -> Vfrom(A, csucc(K)); InfCard(K) \ \ |] ==> f: Vfrom(A,csucc(K))"; by (REPEAT (ares_tac [Card_fun_Vcsucc RS subsetD] 1)); qed "Card_fun_in_Vcsucc"; (*Proved explicitly, in theory InfDatatype, to allow the bind_thm calls below*) Goal "InfCard(K) ==> Limit(csucc(K))"; by (etac (InfCard_csucc RS InfCard_is_Limit) 1); qed "Limit_csucc"; bind_thm ("Pair_in_Vcsucc", Limit_csucc RSN (3, Pair_in_VLimit)); bind_thm ("Inl_in_Vcsucc", Limit_csucc RSN (2, Inl_in_VLimit)); bind_thm ("Inr_in_Vcsucc", Limit_csucc RSN (2, Inr_in_VLimit)); bind_thm ("zero_in_Vcsucc", Limit_csucc RS zero_in_VLimit); bind_thm ("nat_into_Vcsucc", Limit_csucc RSN (2, nat_into_VLimit)); (*For handling Cardinals of the form (nat Un |X|) *) bind_thm ("InfCard_nat_Un_cardinal", [InfCard_nat, Card_cardinal] MRS InfCard_Un); bind_thm ("le_nat_Un_cardinal", [Ord_nat, Card_cardinal RS Card_is_Ord] MRS Un_upper2_le); bind_thm ("UN_upper_cardinal", UN_upper RS subset_imp_lepoll RS lepoll_imp_Card_le); (*For most K-branching datatypes with domain Vfrom(A, csucc(K)) *) bind_thms ("inf_datatype_intrs", [InfCard_nat, InfCard_nat_Un_cardinal, Pair_in_Vcsucc, Inl_in_Vcsucc, Inr_in_Vcsucc, zero_in_Vcsucc, A_into_Vfrom, nat_into_Vcsucc, Card_fun_in_Vcsucc, fun_in_Vcsucc', UN_I] @ Data_Arg.intrs);