src/ZF/Tools/numeral_syntax.ML
author wenzelm
Tue, 28 Jun 2022 15:17:47 +0200
changeset 75629 11e233ba53c8
parent 69593 3dda49e08b9d
permissions -rw-r--r--
minor tuning;

(*  Title:      ZF/Tools/numeral_syntax.ML
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory

Concrete syntax for generic numerals.
*)

signature NUMERAL_SYNTAX =
sig
  val make_binary: int -> int list
  val dest_binary: int list -> int
end;

structure Numeral_Syntax: NUMERAL_SYNTAX =
struct

(* bits *)

fun mk_bit 0 = Syntax.const \<^const_syntax>\<open>zero\<close>
  | mk_bit 1 = Syntax.const \<^const_syntax>\<open>succ\<close> $ Syntax.const \<^const_syntax>\<open>zero\<close>
  | mk_bit _ = raise Fail "mk_bit";

fun dest_bit (Const (\<^const_syntax>\<open>zero\<close>, _)) = 0
  | dest_bit (Const (\<^const_syntax>\<open>one\<close>, _)) = 1
  | dest_bit (Const (\<^const_syntax>\<open>succ\<close>, _) $ Const (\<^const_syntax>\<open>zero\<close>, _)) = 1
  | dest_bit _ = raise Match;


(* bit strings *)

fun make_binary 0 = []
  | make_binary ~1 = [~1]
  | make_binary n = (n mod 2) :: make_binary (n div 2);

fun dest_binary [] = 0
  | dest_binary (b :: bs) = b + 2 * dest_binary bs;


(*try to handle superfluous leading digits nicely*)
fun prefix_len _ [] = 0
  | prefix_len pred (x :: xs) =
      if pred x then 1 + prefix_len pred xs else 0;

fun mk_bin i =
  let
    fun term_of [] = Syntax.const \<^const_syntax>\<open>Pls\<close>
      | term_of [~1] = Syntax.const \<^const_syntax>\<open>Min\<close>
      | term_of (b :: bs) = Syntax.const \<^const_syntax>\<open>Bit\<close> $ term_of bs $ mk_bit b;
  in term_of (make_binary i) end;

fun bin_of (Const (\<^const_syntax>\<open>Pls\<close>, _)) = []
  | bin_of (Const (\<^const_syntax>\<open>Min\<close>, _)) = [~1]
  | bin_of (Const (\<^const_syntax>\<open>Bit\<close>, _) $ bs $ b) = dest_bit b :: bin_of bs
  | bin_of _ = raise Match;

(*Leading 0s and (for negative numbers) -1s cause complications, though they 
  should never arise in normal use. The formalization used in HOL prevents 
  them altogether.*)
fun show_int t =
  let
    val rev_digs = bin_of t;
    val (c, zs) =
      (case rev rev_digs of
         ~1 :: bs => (\<^syntax_const>\<open>_Neg_Int\<close>, prefix_len (equal 1) bs)
      | bs => (\<^syntax_const>\<open>_Int\<close>,  prefix_len (equal 0) bs));
    val num = string_of_int (abs (dest_binary rev_digs));
  in (c, implode (replicate zs "0") ^ num) end;


(* translation of integer constant tokens to and from binary *)

fun int_tr [Free (s, _)] =
      Syntax.const \<^const_syntax>\<open>integ_of\<close> $ mk_bin (#value (Lexicon.read_num s))
  | int_tr ts = raise TERM ("int_tr", ts);

fun neg_int_tr [Free (s, _)] =
      Syntax.const \<^const_syntax>\<open>integ_of\<close> $ mk_bin (~ (#value (Lexicon.read_num s)))
  | neg_int_tr ts = raise TERM ("neg_int_tr", ts);

fun integ_of_tr' [t] =
      let val (c, s) = show_int t
      in Syntax.const c $ Syntax.free s end
  | integ_of_tr' _ = raise Match;

val _ = Theory.setup
 (Sign.parse_translation
   [(\<^syntax_const>\<open>_Int\<close>, K int_tr),
    (\<^syntax_const>\<open>_Neg_Int\<close>, K neg_int_tr)] #>
  Sign.print_translation
   [(\<^const_syntax>\<open>integ_of\<close>, K integ_of_tr')]);

end;