(* Title: HOL/Nonstandard_Analysis/HyperNat.thy
Author: Jacques D. Fleuriot
Copyright: 1998 University of Cambridge
Converted to Isar and polished by lcp
*)
section \<open>Hypernatural numbers\<close>
theory HyperNat
imports StarDef
begin
type_synonym hypnat = "nat star"
abbreviation hypnat_of_nat :: "nat \<Rightarrow> nat star"
where "hypnat_of_nat \<equiv> star_of"
definition hSuc :: "hypnat \<Rightarrow> hypnat"
where hSuc_def [transfer_unfold]: "hSuc = *f* Suc"
subsection \<open>Properties Transferred from Naturals\<close>
lemma hSuc_not_zero [iff]: "\<And>m. hSuc m \<noteq> 0"
by transfer (rule Suc_not_Zero)
lemma zero_not_hSuc [iff]: "\<And>m. 0 \<noteq> hSuc m"
by transfer (rule Zero_not_Suc)
lemma hSuc_hSuc_eq [iff]: "\<And>m n. hSuc m = hSuc n \<longleftrightarrow> m = n"
by transfer (rule nat.inject)
lemma zero_less_hSuc [iff]: "\<And>n. 0 < hSuc n"
by transfer (rule zero_less_Suc)
lemma hypnat_minus_zero [simp]: "\<And>z::hypnat. z - z = 0"
by transfer (rule diff_self_eq_0)
lemma hypnat_diff_0_eq_0 [simp]: "\<And>n::hypnat. 0 - n = 0"
by transfer (rule diff_0_eq_0)
lemma hypnat_add_is_0 [iff]: "\<And>m n::hypnat. m + n = 0 \<longleftrightarrow> m = 0 \<and> n = 0"
by transfer (rule add_is_0)
lemma hypnat_diff_diff_left: "\<And>i j k::hypnat. i - j - k = i - (j + k)"
by transfer (rule diff_diff_left)
lemma hypnat_diff_commute: "\<And>i j k::hypnat. i - j - k = i - k - j"
by transfer (rule diff_commute)
lemma hypnat_diff_add_inverse [simp]: "\<And>m n::hypnat. n + m - n = m"
by transfer (rule diff_add_inverse)
lemma hypnat_diff_add_inverse2 [simp]: "\<And>m n::hypnat. m + n - n = m"
by transfer (rule diff_add_inverse2)
lemma hypnat_diff_cancel [simp]: "\<And>k m n::hypnat. (k + m) - (k + n) = m - n"
by transfer (rule diff_cancel)
lemma hypnat_diff_cancel2 [simp]: "\<And>k m n::hypnat. (m + k) - (n + k) = m - n"
by transfer (rule diff_cancel2)
lemma hypnat_diff_add_0 [simp]: "\<And>m n::hypnat. n - (n + m) = 0"
by transfer (rule diff_add_0)
lemma hypnat_diff_mult_distrib: "\<And>k m n::hypnat. (m - n) * k = (m * k) - (n * k)"
by transfer (rule diff_mult_distrib)
lemma hypnat_diff_mult_distrib2: "\<And>k m n::hypnat. k * (m - n) = (k * m) - (k * n)"
by transfer (rule diff_mult_distrib2)
lemma hypnat_le_zero_cancel [iff]: "\<And>n::hypnat. n \<le> 0 \<longleftrightarrow> n = 0"
by transfer (rule le_0_eq)
lemma hypnat_mult_is_0 [simp]: "\<And>m n::hypnat. m * n = 0 \<longleftrightarrow> m = 0 \<or> n = 0"
by transfer (rule mult_is_0)
lemma hypnat_diff_is_0_eq [simp]: "\<And>m n::hypnat. m - n = 0 \<longleftrightarrow> m \<le> n"
by transfer (rule diff_is_0_eq)
lemma hypnat_not_less0 [iff]: "\<And>n::hypnat. \<not> n < 0"
by transfer (rule not_less0)
lemma hypnat_less_one [iff]: "\<And>n::hypnat. n < 1 \<longleftrightarrow> n = 0"
by transfer (rule less_one)
lemma hypnat_add_diff_inverse: "\<And>m n::hypnat. \<not> m < n \<Longrightarrow> n + (m - n) = m"
by transfer (rule add_diff_inverse)
lemma hypnat_le_add_diff_inverse [simp]: "\<And>m n::hypnat. n \<le> m \<Longrightarrow> n + (m - n) = m"
by transfer (rule le_add_diff_inverse)
lemma hypnat_le_add_diff_inverse2 [simp]: "\<And>m n::hypnat. n \<le> m \<Longrightarrow> (m - n) + n = m"
by transfer (rule le_add_diff_inverse2)
declare hypnat_le_add_diff_inverse2 [OF order_less_imp_le]
lemma hypnat_le0 [iff]: "\<And>n::hypnat. 0 \<le> n"
by transfer (rule le0)
lemma hypnat_le_add1 [simp]: "\<And>x n::hypnat. x \<le> x + n"
by transfer (rule le_add1)
lemma hypnat_add_self_le [simp]: "\<And>x n::hypnat. x \<le> n + x"
by transfer (rule le_add2)
lemma hypnat_add_one_self_less [simp]: "x < x + 1" for x :: hypnat
by (fact less_add_one)
lemma hypnat_neq0_conv [iff]: "\<And>n::hypnat. n \<noteq> 0 \<longleftrightarrow> 0 < n"
by transfer (rule neq0_conv)
lemma hypnat_gt_zero_iff: "0 < n \<longleftrightarrow> 1 \<le> n" for n :: hypnat
by (auto simp add: linorder_not_less [symmetric])
lemma hypnat_gt_zero_iff2: "0 < n \<longleftrightarrow> (\<exists>m. n = m + 1)" for n :: hypnat
by (auto intro!: add_nonneg_pos exI[of _ "n - 1"] simp: hypnat_gt_zero_iff)
lemma hypnat_add_self_not_less: "\<not> x + y < x" for x y :: hypnat
by (simp add: linorder_not_le [symmetric] add.commute [of x])
lemma hypnat_diff_split: "P (a - b) \<longleftrightarrow> (a < b \<longrightarrow> P 0) \<and> (\<forall>d. a = b + d \<longrightarrow> P d)"
for a b :: hypnat
\<comment> \<open>elimination of \<open>-\<close> on \<open>hypnat\<close>\<close>
proof (cases "a < b" rule: case_split)
case True
then show ?thesis
by (auto simp add: hypnat_add_self_not_less order_less_imp_le hypnat_diff_is_0_eq [THEN iffD2])
next
case False
then show ?thesis
by (auto simp add: linorder_not_less dest: order_le_less_trans)
qed
subsection \<open>Properties of the set of embedded natural numbers\<close>
lemma of_nat_eq_star_of [simp]: "of_nat = star_of"
proof
show "of_nat n = star_of n" for n
by transfer simp
qed
lemma Nats_eq_Standard: "(Nats :: nat star set) = Standard"
by (auto simp: Nats_def Standard_def)
lemma hypnat_of_nat_mem_Nats [simp]: "hypnat_of_nat n \<in> Nats"
by (simp add: Nats_eq_Standard)
lemma hypnat_of_nat_one [simp]: "hypnat_of_nat (Suc 0) = 1"
by transfer simp
lemma hypnat_of_nat_Suc [simp]: "hypnat_of_nat (Suc n) = hypnat_of_nat n + 1"
by transfer simp
lemma of_nat_eq_add:
fixes d::hypnat
shows "of_nat m = of_nat n + d \<Longrightarrow> d \<in> range of_nat"
proof (induct n arbitrary: d)
case (Suc n)
then show ?case
by (metis Nats_def Nats_eq_Standard Standard_simps(4) hypnat_diff_add_inverse of_nat_in_Nats)
qed auto
lemma Nats_diff [simp]: "a \<in> Nats \<Longrightarrow> b \<in> Nats \<Longrightarrow> a - b \<in> Nats" for a b :: hypnat
by (simp add: Nats_eq_Standard)
subsection \<open>Infinite Hypernatural Numbers -- \<^term>\<open>HNatInfinite\<close>\<close>
text \<open>The set of infinite hypernatural numbers.\<close>
definition HNatInfinite :: "hypnat set"
where "HNatInfinite = {n. n \<notin> Nats}"
lemma Nats_not_HNatInfinite_iff: "x \<in> Nats \<longleftrightarrow> x \<notin> HNatInfinite"
by (simp add: HNatInfinite_def)
lemma HNatInfinite_not_Nats_iff: "x \<in> HNatInfinite \<longleftrightarrow> x \<notin> Nats"
by (simp add: HNatInfinite_def)
lemma star_of_neq_HNatInfinite: "N \<in> HNatInfinite \<Longrightarrow> star_of n \<noteq> N"
by (auto simp add: HNatInfinite_def Nats_eq_Standard)
lemma star_of_Suc_lessI: "\<And>N. star_of n < N \<Longrightarrow> star_of (Suc n) \<noteq> N \<Longrightarrow> star_of (Suc n) < N"
by transfer (rule Suc_lessI)
lemma star_of_less_HNatInfinite:
assumes N: "N \<in> HNatInfinite"
shows "star_of n < N"
proof (induct n)
case 0
from N have "star_of 0 \<noteq> N"
by (rule star_of_neq_HNatInfinite)
then show ?case by simp
next
case (Suc n)
from N have "star_of (Suc n) \<noteq> N"
by (rule star_of_neq_HNatInfinite)
with Suc show ?case
by (rule star_of_Suc_lessI)
qed
lemma star_of_le_HNatInfinite: "N \<in> HNatInfinite \<Longrightarrow> star_of n \<le> N"
by (rule star_of_less_HNatInfinite [THEN order_less_imp_le])
subsubsection \<open>Closure Rules\<close>
lemma Nats_less_HNatInfinite: "x \<in> Nats \<Longrightarrow> y \<in> HNatInfinite \<Longrightarrow> x < y"
by (auto simp add: Nats_def star_of_less_HNatInfinite)
lemma Nats_le_HNatInfinite: "x \<in> Nats \<Longrightarrow> y \<in> HNatInfinite \<Longrightarrow> x \<le> y"
by (rule Nats_less_HNatInfinite [THEN order_less_imp_le])
lemma zero_less_HNatInfinite: "x \<in> HNatInfinite \<Longrightarrow> 0 < x"
by (simp add: Nats_less_HNatInfinite)
lemma one_less_HNatInfinite: "x \<in> HNatInfinite \<Longrightarrow> 1 < x"
by (simp add: Nats_less_HNatInfinite)
lemma one_le_HNatInfinite: "x \<in> HNatInfinite \<Longrightarrow> 1 \<le> x"
by (simp add: Nats_le_HNatInfinite)
lemma zero_not_mem_HNatInfinite [simp]: "0 \<notin> HNatInfinite"
by (simp add: HNatInfinite_def)
lemma Nats_downward_closed: "x \<in> Nats \<Longrightarrow> y \<le> x \<Longrightarrow> y \<in> Nats" for x y :: hypnat
using HNatInfinite_not_Nats_iff Nats_le_HNatInfinite by fastforce
lemma HNatInfinite_upward_closed: "x \<in> HNatInfinite \<Longrightarrow> x \<le> y \<Longrightarrow> y \<in> HNatInfinite"
using HNatInfinite_not_Nats_iff Nats_downward_closed by blast
lemma HNatInfinite_add: "x \<in> HNatInfinite \<Longrightarrow> x + y \<in> HNatInfinite"
using HNatInfinite_upward_closed hypnat_le_add1 by blast
lemma HNatInfinite_diff: "\<lbrakk>x \<in> HNatInfinite; y \<in> Nats\<rbrakk> \<Longrightarrow> x - y \<in> HNatInfinite"
by (metis HNatInfinite_not_Nats_iff Nats_add Nats_le_HNatInfinite le_add_diff_inverse)
lemma HNatInfinite_is_Suc: "x \<in> HNatInfinite \<Longrightarrow> \<exists>y. x = y + 1" for x :: hypnat
using hypnat_gt_zero_iff2 zero_less_HNatInfinite by blast
subsection \<open>Existence of an infinite hypernatural number\<close>
text \<open>\<open>\<omega>\<close> is in fact an infinite hypernatural number = \<open>[<1, 2, 3, \<dots>>]\<close>\<close>
definition whn :: hypnat
where hypnat_omega_def: "whn = star_n (\<lambda>n::nat. n)"
lemma hypnat_of_nat_neq_whn: "hypnat_of_nat n \<noteq> whn"
by (simp add: FreeUltrafilterNat.singleton' hypnat_omega_def star_of_def star_n_eq_iff)
lemma whn_neq_hypnat_of_nat: "whn \<noteq> hypnat_of_nat n"
by (simp add: FreeUltrafilterNat.singleton hypnat_omega_def star_of_def star_n_eq_iff)
lemma whn_not_Nats [simp]: "whn \<notin> Nats"
by (simp add: Nats_def image_def whn_neq_hypnat_of_nat)
lemma HNatInfinite_whn [simp]: "whn \<in> HNatInfinite"
by (simp add: HNatInfinite_def)
lemma lemma_unbounded_set [simp]: "eventually (\<lambda>n::nat. m < n) \<U>"
by (rule filter_leD[OF FreeUltrafilterNat.le_cofinite])
(auto simp add: cofinite_eq_sequentially eventually_at_top_dense)
lemma hypnat_of_nat_eq: "hypnat_of_nat m = star_n (\<lambda>n::nat. m)"
by (simp add: star_of_def)
lemma SHNat_eq: "Nats = {n. \<exists>N. n = hypnat_of_nat N}"
by (simp add: Nats_def image_def)
lemma Nats_less_whn: "n \<in> Nats \<Longrightarrow> n < whn"
by (simp add: Nats_less_HNatInfinite)
lemma Nats_le_whn: "n \<in> Nats \<Longrightarrow> n \<le> whn"
by (simp add: Nats_le_HNatInfinite)
lemma hypnat_of_nat_less_whn [simp]: "hypnat_of_nat n < whn"
by (simp add: Nats_less_whn)
lemma hypnat_of_nat_le_whn [simp]: "hypnat_of_nat n \<le> whn"
by (simp add: Nats_le_whn)
lemma hypnat_zero_less_hypnat_omega [simp]: "0 < whn"
by (simp add: Nats_less_whn)
lemma hypnat_one_less_hypnat_omega [simp]: "1 < whn"
by (simp add: Nats_less_whn)
subsubsection \<open>Alternative characterization of the set of infinite hypernaturals\<close>
text \<open>\<^term>\<open>HNatInfinite = {N. \<forall>n \<in> Nats. n < N}\<close>\<close>
text\<open>unused, but possibly interesting\<close>
lemma HNatInfinite_FreeUltrafilterNat_eventually:
assumes "\<And>k::nat. eventually (\<lambda>n. f n \<noteq> k) \<U>"
shows "eventually (\<lambda>n. m < f n) \<U>"
proof (induct m)
case 0
then show ?case
using assms eventually_mono by fastforce
next
case (Suc m)
then show ?case
using assms [of "Suc m"] eventually_elim2 by fastforce
qed
lemma HNatInfinite_iff: "HNatInfinite = {N. \<forall>n \<in> Nats. n < N}"
using HNatInfinite_def Nats_less_HNatInfinite by auto
subsubsection \<open>Alternative Characterization of \<^term>\<open>HNatInfinite\<close> using Free Ultrafilter\<close>
lemma HNatInfinite_FreeUltrafilterNat:
"star_n X \<in> HNatInfinite \<Longrightarrow> \<forall>u. eventually (\<lambda>n. u < X n) \<U>"
by (metis (full_types) starP2_star_of starP_star_n star_less_def star_of_less_HNatInfinite)
lemma FreeUltrafilterNat_HNatInfinite:
"\<forall>u. eventually (\<lambda>n. u < X n) \<U> \<Longrightarrow> star_n X \<in> HNatInfinite"
by (auto simp add: star_less_def starP2_star_n HNatInfinite_iff SHNat_eq hypnat_of_nat_eq)
lemma HNatInfinite_FreeUltrafilterNat_iff:
"(star_n X \<in> HNatInfinite) = (\<forall>u. eventually (\<lambda>n. u < X n) \<U>)"
by (rule iffI [OF HNatInfinite_FreeUltrafilterNat FreeUltrafilterNat_HNatInfinite])
subsection \<open>Embedding of the Hypernaturals into other types\<close>
definition of_hypnat :: "hypnat \<Rightarrow> 'a::semiring_1_cancel star"
where of_hypnat_def [transfer_unfold]: "of_hypnat = *f* of_nat"
lemma of_hypnat_0 [simp]: "of_hypnat 0 = 0"
by transfer (rule of_nat_0)
lemma of_hypnat_1 [simp]: "of_hypnat 1 = 1"
by transfer (rule of_nat_1)
lemma of_hypnat_hSuc: "\<And>m. of_hypnat (hSuc m) = 1 + of_hypnat m"
by transfer (rule of_nat_Suc)
lemma of_hypnat_add [simp]: "\<And>m n. of_hypnat (m + n) = of_hypnat m + of_hypnat n"
by transfer (rule of_nat_add)
lemma of_hypnat_mult [simp]: "\<And>m n. of_hypnat (m * n) = of_hypnat m * of_hypnat n"
by transfer (rule of_nat_mult)
lemma of_hypnat_less_iff [simp]:
"\<And>m n. of_hypnat m < (of_hypnat n::'a::linordered_semidom star) \<longleftrightarrow> m < n"
by transfer (rule of_nat_less_iff)
lemma of_hypnat_0_less_iff [simp]:
"\<And>n. 0 < (of_hypnat n::'a::linordered_semidom star) \<longleftrightarrow> 0 < n"
by transfer (rule of_nat_0_less_iff)
lemma of_hypnat_less_0_iff [simp]: "\<And>m. \<not> (of_hypnat m::'a::linordered_semidom star) < 0"
by transfer (rule of_nat_less_0_iff)
lemma of_hypnat_le_iff [simp]:
"\<And>m n. of_hypnat m \<le> (of_hypnat n::'a::linordered_semidom star) \<longleftrightarrow> m \<le> n"
by transfer (rule of_nat_le_iff)
lemma of_hypnat_0_le_iff [simp]: "\<And>n. 0 \<le> (of_hypnat n::'a::linordered_semidom star)"
by transfer (rule of_nat_0_le_iff)
lemma of_hypnat_le_0_iff [simp]: "\<And>m. (of_hypnat m::'a::linordered_semidom star) \<le> 0 \<longleftrightarrow> m = 0"
by transfer (rule of_nat_le_0_iff)
lemma of_hypnat_eq_iff [simp]:
"\<And>m n. of_hypnat m = (of_hypnat n::'a::linordered_semidom star) \<longleftrightarrow> m = n"
by transfer (rule of_nat_eq_iff)
lemma of_hypnat_eq_0_iff [simp]: "\<And>m. (of_hypnat m::'a::linordered_semidom star) = 0 \<longleftrightarrow> m = 0"
by transfer (rule of_nat_eq_0_iff)
lemma HNatInfinite_of_hypnat_gt_zero:
"N \<in> HNatInfinite \<Longrightarrow> (0::'a::linordered_semidom star) < of_hypnat N"
by (rule ccontr) (simp add: linorder_not_less)
end