(* Title: HOL/UNITY/Project.thy
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1999 University of Cambridge
Projections of state sets (also of actions and programs).
Inheritance of GUARANTEES properties under extension.
*)
header{*Projections of State Sets*}
theory Project imports Extend begin
definition projecting :: "['c program => 'c set, 'a*'b => 'c,
'a program, 'c program set, 'a program set] => bool" where
"projecting C h F X' X ==
\<forall>G. extend h F\<squnion>G \<in> X' --> F\<squnion>project h (C G) G \<in> X"
definition extending :: "['c program => 'c set, 'a*'b => 'c, 'a program,
'c program set, 'a program set] => bool" where
"extending C h F Y' Y ==
\<forall>G. extend h F ok G --> F\<squnion>project h (C G) G \<in> Y
--> extend h F\<squnion>G \<in> Y'"
definition subset_closed :: "'a set set => bool" where
"subset_closed U == \<forall>A \<in> U. Pow A \<subseteq> U"
lemma (in Extend) project_extend_constrains_I:
"F \<in> A co B ==> project h C (extend h F) \<in> A co B"
apply (auto simp add: extend_act_def project_act_def constrains_def)
done
subsection{*Safety*}
(*used below to prove Join_project_ensures*)
lemma (in Extend) project_unless [rule_format]:
"[| G \<in> stable C; project h C G \<in> A unless B |]
==> G \<in> (C \<inter> extend_set h A) unless (extend_set h B)"
apply (simp add: unless_def project_constrains)
apply (blast dest: stable_constrains_Int intro: constrains_weaken)
done
(*Generalizes project_constrains to the program F\<squnion>project h C G
useful with guarantees reasoning*)
lemma (in Extend) Join_project_constrains:
"(F\<squnion>project h C G \<in> A co B) =
(extend h F\<squnion>G \<in> (C \<inter> extend_set h A) co (extend_set h B) &
F \<in> A co B)"
apply (simp (no_asm) add: project_constrains)
apply (blast intro: extend_constrains [THEN iffD2, THEN constrains_weaken]
dest: constrains_imp_subset)
done
(*The condition is required to prove the left-to-right direction
could weaken it to G \<in> (C \<inter> extend_set h A) co C*)
lemma (in Extend) Join_project_stable:
"extend h F\<squnion>G \<in> stable C
==> (F\<squnion>project h C G \<in> stable A) =
(extend h F\<squnion>G \<in> stable (C \<inter> extend_set h A) &
F \<in> stable A)"
apply (unfold stable_def)
apply (simp only: Join_project_constrains)
apply (blast intro: constrains_weaken dest: constrains_Int)
done
(*For using project_guarantees in particular cases*)
lemma (in Extend) project_constrains_I:
"extend h F\<squnion>G \<in> extend_set h A co extend_set h B
==> F\<squnion>project h C G \<in> A co B"
apply (simp add: project_constrains extend_constrains)
apply (blast intro: constrains_weaken dest: constrains_imp_subset)
done
lemma (in Extend) project_increasing_I:
"extend h F\<squnion>G \<in> increasing (func o f)
==> F\<squnion>project h C G \<in> increasing func"
apply (unfold increasing_def stable_def)
apply (simp del: Join_constrains
add: project_constrains_I extend_set_eq_Collect)
done
lemma (in Extend) Join_project_increasing:
"(F\<squnion>project h UNIV G \<in> increasing func) =
(extend h F\<squnion>G \<in> increasing (func o f))"
apply (rule iffI)
apply (erule_tac [2] project_increasing_I)
apply (simp del: Join_stable
add: increasing_def Join_project_stable)
apply (auto simp add: extend_set_eq_Collect extend_stable [THEN iffD1])
done
(*The UNIV argument is essential*)
lemma (in Extend) project_constrains_D:
"F\<squnion>project h UNIV G \<in> A co B
==> extend h F\<squnion>G \<in> extend_set h A co extend_set h B"
by (simp add: project_constrains extend_constrains)
subsection{*"projecting" and union/intersection (no converses)*}
lemma projecting_Int:
"[| projecting C h F XA' XA; projecting C h F XB' XB |]
==> projecting C h F (XA' \<inter> XB') (XA \<inter> XB)"
by (unfold projecting_def, blast)
lemma projecting_Un:
"[| projecting C h F XA' XA; projecting C h F XB' XB |]
==> projecting C h F (XA' \<union> XB') (XA \<union> XB)"
by (unfold projecting_def, blast)
lemma projecting_INT:
"[| !!i. i \<in> I ==> projecting C h F (X' i) (X i) |]
==> projecting C h F (\<Inter>i \<in> I. X' i) (\<Inter>i \<in> I. X i)"
by (unfold projecting_def, blast)
lemma projecting_UN:
"[| !!i. i \<in> I ==> projecting C h F (X' i) (X i) |]
==> projecting C h F (\<Union>i \<in> I. X' i) (\<Union>i \<in> I. X i)"
by (unfold projecting_def, blast)
lemma projecting_weaken:
"[| projecting C h F X' X; U'<=X'; X \<subseteq> U |] ==> projecting C h F U' U"
by (unfold projecting_def, auto)
lemma projecting_weaken_L:
"[| projecting C h F X' X; U'<=X' |] ==> projecting C h F U' X"
by (unfold projecting_def, auto)
lemma extending_Int:
"[| extending C h F YA' YA; extending C h F YB' YB |]
==> extending C h F (YA' \<inter> YB') (YA \<inter> YB)"
by (unfold extending_def, blast)
lemma extending_Un:
"[| extending C h F YA' YA; extending C h F YB' YB |]
==> extending C h F (YA' \<union> YB') (YA \<union> YB)"
by (unfold extending_def, blast)
lemma extending_INT:
"[| !!i. i \<in> I ==> extending C h F (Y' i) (Y i) |]
==> extending C h F (\<Inter>i \<in> I. Y' i) (\<Inter>i \<in> I. Y i)"
by (unfold extending_def, blast)
lemma extending_UN:
"[| !!i. i \<in> I ==> extending C h F (Y' i) (Y i) |]
==> extending C h F (\<Union>i \<in> I. Y' i) (\<Union>i \<in> I. Y i)"
by (unfold extending_def, blast)
lemma extending_weaken:
"[| extending C h F Y' Y; Y'<=V'; V \<subseteq> Y |] ==> extending C h F V' V"
by (unfold extending_def, auto)
lemma extending_weaken_L:
"[| extending C h F Y' Y; Y'<=V' |] ==> extending C h F V' Y"
by (unfold extending_def, auto)
lemma projecting_UNIV: "projecting C h F X' UNIV"
by (simp add: projecting_def)
lemma (in Extend) projecting_constrains:
"projecting C h F (extend_set h A co extend_set h B) (A co B)"
apply (unfold projecting_def)
apply (blast intro: project_constrains_I)
done
lemma (in Extend) projecting_stable:
"projecting C h F (stable (extend_set h A)) (stable A)"
apply (unfold stable_def)
apply (rule projecting_constrains)
done
lemma (in Extend) projecting_increasing:
"projecting C h F (increasing (func o f)) (increasing func)"
apply (unfold projecting_def)
apply (blast intro: project_increasing_I)
done
lemma (in Extend) extending_UNIV: "extending C h F UNIV Y"
apply (simp (no_asm) add: extending_def)
done
lemma (in Extend) extending_constrains:
"extending (%G. UNIV) h F (extend_set h A co extend_set h B) (A co B)"
apply (unfold extending_def)
apply (blast intro: project_constrains_D)
done
lemma (in Extend) extending_stable:
"extending (%G. UNIV) h F (stable (extend_set h A)) (stable A)"
apply (unfold stable_def)
apply (rule extending_constrains)
done
lemma (in Extend) extending_increasing:
"extending (%G. UNIV) h F (increasing (func o f)) (increasing func)"
by (force simp only: extending_def Join_project_increasing)
subsection{*Reachability and project*}
(*In practice, C = reachable(...): the inclusion is equality*)
lemma (in Extend) reachable_imp_reachable_project:
"[| reachable (extend h F\<squnion>G) \<subseteq> C;
z \<in> reachable (extend h F\<squnion>G) |]
==> f z \<in> reachable (F\<squnion>project h C G)"
apply (erule reachable.induct)
apply (force intro!: reachable.Init simp add: split_extended_all, auto)
apply (rule_tac act = x in reachable.Acts)
apply auto
apply (erule extend_act_D)
apply (rule_tac act1 = "Restrict C act"
in project_act_I [THEN [3] reachable.Acts], auto)
done
lemma (in Extend) project_Constrains_D:
"F\<squnion>project h (reachable (extend h F\<squnion>G)) G \<in> A Co B
==> extend h F\<squnion>G \<in> (extend_set h A) Co (extend_set h B)"
apply (unfold Constrains_def)
apply (simp del: Join_constrains
add: Join_project_constrains, clarify)
apply (erule constrains_weaken)
apply (auto intro: reachable_imp_reachable_project)
done
lemma (in Extend) project_Stable_D:
"F\<squnion>project h (reachable (extend h F\<squnion>G)) G \<in> Stable A
==> extend h F\<squnion>G \<in> Stable (extend_set h A)"
apply (unfold Stable_def)
apply (simp (no_asm_simp) add: project_Constrains_D)
done
lemma (in Extend) project_Always_D:
"F\<squnion>project h (reachable (extend h F\<squnion>G)) G \<in> Always A
==> extend h F\<squnion>G \<in> Always (extend_set h A)"
apply (unfold Always_def)
apply (force intro: reachable.Init simp add: project_Stable_D split_extended_all)
done
lemma (in Extend) project_Increasing_D:
"F\<squnion>project h (reachable (extend h F\<squnion>G)) G \<in> Increasing func
==> extend h F\<squnion>G \<in> Increasing (func o f)"
apply (unfold Increasing_def, auto)
apply (subst extend_set_eq_Collect [symmetric])
apply (simp (no_asm_simp) add: project_Stable_D)
done
subsection{*Converse results for weak safety: benefits of the argument C *}
(*In practice, C = reachable(...): the inclusion is equality*)
lemma (in Extend) reachable_project_imp_reachable:
"[| C \<subseteq> reachable(extend h F\<squnion>G);
x \<in> reachable (F\<squnion>project h C G) |]
==> \<exists>y. h(x,y) \<in> reachable (extend h F\<squnion>G)"
apply (erule reachable.induct)
apply (force intro: reachable.Init)
apply (auto simp add: project_act_def)
apply (force del: Id_in_Acts intro: reachable.Acts extend_act_D)+
done
lemma (in Extend) project_set_reachable_extend_eq:
"project_set h (reachable (extend h F\<squnion>G)) =
reachable (F\<squnion>project h (reachable (extend h F\<squnion>G)) G)"
by (auto dest: subset_refl [THEN reachable_imp_reachable_project]
subset_refl [THEN reachable_project_imp_reachable])
(*UNUSED*)
lemma (in Extend) reachable_extend_Join_subset:
"reachable (extend h F\<squnion>G) \<subseteq> C
==> reachable (extend h F\<squnion>G) \<subseteq>
extend_set h (reachable (F\<squnion>project h C G))"
apply (auto dest: reachable_imp_reachable_project)
done
lemma (in Extend) project_Constrains_I:
"extend h F\<squnion>G \<in> (extend_set h A) Co (extend_set h B)
==> F\<squnion>project h (reachable (extend h F\<squnion>G)) G \<in> A Co B"
apply (unfold Constrains_def)
apply (simp del: Join_constrains
add: Join_project_constrains extend_set_Int_distrib)
apply (rule conjI)
prefer 2
apply (force elim: constrains_weaken_L
dest!: extend_constrains_project_set
subset_refl [THEN reachable_project_imp_reachable])
apply (blast intro: constrains_weaken_L)
done
lemma (in Extend) project_Stable_I:
"extend h F\<squnion>G \<in> Stable (extend_set h A)
==> F\<squnion>project h (reachable (extend h F\<squnion>G)) G \<in> Stable A"
apply (unfold Stable_def)
apply (simp (no_asm_simp) add: project_Constrains_I)
done
lemma (in Extend) project_Always_I:
"extend h F\<squnion>G \<in> Always (extend_set h A)
==> F\<squnion>project h (reachable (extend h F\<squnion>G)) G \<in> Always A"
apply (unfold Always_def)
apply (auto simp add: project_Stable_I)
apply (unfold extend_set_def, blast)
done
lemma (in Extend) project_Increasing_I:
"extend h F\<squnion>G \<in> Increasing (func o f)
==> F\<squnion>project h (reachable (extend h F\<squnion>G)) G \<in> Increasing func"
apply (unfold Increasing_def, auto)
apply (simp (no_asm_simp) add: extend_set_eq_Collect project_Stable_I)
done
lemma (in Extend) project_Constrains:
"(F\<squnion>project h (reachable (extend h F\<squnion>G)) G \<in> A Co B) =
(extend h F\<squnion>G \<in> (extend_set h A) Co (extend_set h B))"
apply (blast intro: project_Constrains_I project_Constrains_D)
done
lemma (in Extend) project_Stable:
"(F\<squnion>project h (reachable (extend h F\<squnion>G)) G \<in> Stable A) =
(extend h F\<squnion>G \<in> Stable (extend_set h A))"
apply (unfold Stable_def)
apply (rule project_Constrains)
done
lemma (in Extend) project_Increasing:
"(F\<squnion>project h (reachable (extend h F\<squnion>G)) G \<in> Increasing func) =
(extend h F\<squnion>G \<in> Increasing (func o f))"
apply (simp (no_asm_simp) add: Increasing_def project_Stable extend_set_eq_Collect)
done
subsection{*A lot of redundant theorems: all are proved to facilitate reasoning
about guarantees.*}
lemma (in Extend) projecting_Constrains:
"projecting (%G. reachable (extend h F\<squnion>G)) h F
(extend_set h A Co extend_set h B) (A Co B)"
apply (unfold projecting_def)
apply (blast intro: project_Constrains_I)
done
lemma (in Extend) projecting_Stable:
"projecting (%G. reachable (extend h F\<squnion>G)) h F
(Stable (extend_set h A)) (Stable A)"
apply (unfold Stable_def)
apply (rule projecting_Constrains)
done
lemma (in Extend) projecting_Always:
"projecting (%G. reachable (extend h F\<squnion>G)) h F
(Always (extend_set h A)) (Always A)"
apply (unfold projecting_def)
apply (blast intro: project_Always_I)
done
lemma (in Extend) projecting_Increasing:
"projecting (%G. reachable (extend h F\<squnion>G)) h F
(Increasing (func o f)) (Increasing func)"
apply (unfold projecting_def)
apply (blast intro: project_Increasing_I)
done
lemma (in Extend) extending_Constrains:
"extending (%G. reachable (extend h F\<squnion>G)) h F
(extend_set h A Co extend_set h B) (A Co B)"
apply (unfold extending_def)
apply (blast intro: project_Constrains_D)
done
lemma (in Extend) extending_Stable:
"extending (%G. reachable (extend h F\<squnion>G)) h F
(Stable (extend_set h A)) (Stable A)"
apply (unfold extending_def)
apply (blast intro: project_Stable_D)
done
lemma (in Extend) extending_Always:
"extending (%G. reachable (extend h F\<squnion>G)) h F
(Always (extend_set h A)) (Always A)"
apply (unfold extending_def)
apply (blast intro: project_Always_D)
done
lemma (in Extend) extending_Increasing:
"extending (%G. reachable (extend h F\<squnion>G)) h F
(Increasing (func o f)) (Increasing func)"
apply (unfold extending_def)
apply (blast intro: project_Increasing_D)
done
subsection{*leadsETo in the precondition (??)*}
subsubsection{*transient*}
lemma (in Extend) transient_extend_set_imp_project_transient:
"[| G \<in> transient (C \<inter> extend_set h A); G \<in> stable C |]
==> project h C G \<in> transient (project_set h C \<inter> A)"
apply (auto simp add: transient_def Domain_project_act)
apply (subgoal_tac "act `` (C \<inter> extend_set h A) \<subseteq> - extend_set h A")
prefer 2
apply (simp add: stable_def constrains_def, blast)
(*back to main goal*)
apply (erule_tac V = "?AA \<subseteq> -C \<union> ?BB" in thin_rl)
apply (drule bspec, assumption)
apply (simp add: extend_set_def project_act_def, blast)
done
(*converse might hold too?*)
lemma (in Extend) project_extend_transient_D:
"project h C (extend h F) \<in> transient (project_set h C \<inter> D)
==> F \<in> transient (project_set h C \<inter> D)"
apply (simp add: transient_def Domain_project_act, safe)
apply blast+
done
subsubsection{*ensures -- a primitive combining progress with safety*}
(*Used to prove project_leadsETo_I*)
lemma (in Extend) ensures_extend_set_imp_project_ensures:
"[| extend h F \<in> stable C; G \<in> stable C;
extend h F\<squnion>G \<in> A ensures B; A-B = C \<inter> extend_set h D |]
==> F\<squnion>project h C G
\<in> (project_set h C \<inter> project_set h A) ensures (project_set h B)"
apply (simp add: ensures_def project_constrains Join_transient extend_transient,
clarify)
apply (intro conjI)
(*first subgoal*)
apply (blast intro: extend_stable_project_set
[THEN stableD, THEN constrains_Int, THEN constrains_weaken]
dest!: extend_constrains_project_set equalityD1)
(*2nd subgoal*)
apply (erule stableD [THEN constrains_Int, THEN constrains_weaken])
apply assumption
apply (simp (no_asm_use) add: extend_set_def)
apply blast
apply (simp add: extend_set_Int_distrib extend_set_Un_distrib)
apply (blast intro!: extend_set_project_set [THEN subsetD], blast)
(*The transient part*)
apply auto
prefer 2
apply (force dest!: equalityD1
intro: transient_extend_set_imp_project_transient
[THEN transient_strengthen])
apply (simp (no_asm_use) add: Int_Diff)
apply (force dest!: equalityD1
intro: transient_extend_set_imp_project_transient
[THEN project_extend_transient_D, THEN transient_strengthen])
done
text{*Transferring a transient property upwards*}
lemma (in Extend) project_transient_extend_set:
"project h C G \<in> transient (project_set h C \<inter> A - B)
==> G \<in> transient (C \<inter> extend_set h A - extend_set h B)"
apply (simp add: transient_def project_set_def extend_set_def project_act_def)
apply (elim disjE bexE)
apply (rule_tac x=Id in bexI)
apply (blast intro!: rev_bexI )+
done
lemma (in Extend) project_unless2 [rule_format]:
"[| G \<in> stable C; project h C G \<in> (project_set h C \<inter> A) unless B |]
==> G \<in> (C \<inter> extend_set h A) unless (extend_set h B)"
by (auto dest: stable_constrains_Int intro: constrains_weaken
simp add: unless_def project_constrains Diff_eq Int_assoc
Int_extend_set_lemma)
lemma (in Extend) extend_unless:
"[|extend h F \<in> stable C; F \<in> A unless B|]
==> extend h F \<in> C \<inter> extend_set h A unless extend_set h B"
apply (simp add: unless_def stable_def)
apply (drule constrains_Int)
apply (erule extend_constrains [THEN iffD2])
apply (erule constrains_weaken, blast)
apply blast
done
(*Used to prove project_leadsETo_D*)
lemma (in Extend) Join_project_ensures [rule_format]:
"[| extend h F\<squnion>G \<in> stable C;
F\<squnion>project h C G \<in> A ensures B |]
==> extend h F\<squnion>G \<in> (C \<inter> extend_set h A) ensures (extend_set h B)"
apply (auto simp add: ensures_eq extend_unless project_unless)
apply (blast intro: extend_transient [THEN iffD2] transient_strengthen)
apply (blast intro: project_transient_extend_set transient_strengthen)
done
text{*Lemma useful for both STRONG and WEAK progress, but the transient
condition's very strong*}
(*The strange induction formula allows induction over the leadsTo
assumption's non-atomic precondition*)
lemma (in Extend) PLD_lemma:
"[| extend h F\<squnion>G \<in> stable C;
F\<squnion>project h C G \<in> (project_set h C \<inter> A) leadsTo B |]
==> extend h F\<squnion>G \<in>
C \<inter> extend_set h (project_set h C \<inter> A) leadsTo (extend_set h B)"
apply (erule leadsTo_induct)
apply (blast intro: leadsTo_Basis Join_project_ensures)
apply (blast intro: psp_stable2 [THEN leadsTo_weaken_L] leadsTo_Trans)
apply (simp del: UN_simps add: Int_UN_distrib leadsTo_UN extend_set_Union)
done
lemma (in Extend) project_leadsTo_D_lemma:
"[| extend h F\<squnion>G \<in> stable C;
F\<squnion>project h C G \<in> (project_set h C \<inter> A) leadsTo B |]
==> extend h F\<squnion>G \<in> (C \<inter> extend_set h A) leadsTo (extend_set h B)"
apply (rule PLD_lemma [THEN leadsTo_weaken])
apply (auto simp add: split_extended_all)
done
lemma (in Extend) Join_project_LeadsTo:
"[| C = (reachable (extend h F\<squnion>G));
F\<squnion>project h C G \<in> A LeadsTo B |]
==> extend h F\<squnion>G \<in> (extend_set h A) LeadsTo (extend_set h B)"
by (simp del: Join_stable add: LeadsTo_def project_leadsTo_D_lemma
project_set_reachable_extend_eq)
subsection{*Towards the theorem @{text project_Ensures_D}*}
lemma (in Extend) project_ensures_D_lemma:
"[| G \<in> stable ((C \<inter> extend_set h A) - (extend_set h B));
F\<squnion>project h C G \<in> (project_set h C \<inter> A) ensures B;
extend h F\<squnion>G \<in> stable C |]
==> extend h F\<squnion>G \<in> (C \<inter> extend_set h A) ensures (extend_set h B)"
(*unless*)
apply (auto intro!: project_unless2 [unfolded unless_def]
intro: project_extend_constrains_I
simp add: ensures_def)
(*transient*)
(*A G-action cannot occur*)
prefer 2
apply (blast intro: project_transient_extend_set)
(*An F-action*)
apply (force elim!: extend_transient [THEN iffD2, THEN transient_strengthen]
simp add: split_extended_all)
done
lemma (in Extend) project_ensures_D:
"[| F\<squnion>project h UNIV G \<in> A ensures B;
G \<in> stable (extend_set h A - extend_set h B) |]
==> extend h F\<squnion>G \<in> (extend_set h A) ensures (extend_set h B)"
apply (rule project_ensures_D_lemma [of _ UNIV, THEN revcut_rl], auto)
done
lemma (in Extend) project_Ensures_D:
"[| F\<squnion>project h (reachable (extend h F\<squnion>G)) G \<in> A Ensures B;
G \<in> stable (reachable (extend h F\<squnion>G) \<inter> extend_set h A -
extend_set h B) |]
==> extend h F\<squnion>G \<in> (extend_set h A) Ensures (extend_set h B)"
apply (unfold Ensures_def)
apply (rule project_ensures_D_lemma [THEN revcut_rl])
apply (auto simp add: project_set_reachable_extend_eq [symmetric])
done
subsection{*Guarantees*}
lemma (in Extend) project_act_Restrict_subset_project_act:
"project_act h (Restrict C act) \<subseteq> project_act h act"
apply (auto simp add: project_act_def)
done
lemma (in Extend) subset_closed_ok_extend_imp_ok_project:
"[| extend h F ok G; subset_closed (AllowedActs F) |]
==> F ok project h C G"
apply (auto simp add: ok_def)
apply (rename_tac act)
apply (drule subsetD, blast)
apply (rule_tac x = "Restrict C (extend_act h act)" in rev_image_eqI)
apply simp +
apply (cut_tac project_act_Restrict_subset_project_act)
apply (auto simp add: subset_closed_def)
done
(*Weak precondition and postcondition
Not clear that it has a converse [or that we want one!]*)
(*The raw version; 3rd premise could be weakened by adding the
precondition extend h F\<squnion>G \<in> X' *)
lemma (in Extend) project_guarantees_raw:
assumes xguary: "F \<in> X guarantees Y"
and closed: "subset_closed (AllowedActs F)"
and project: "!!G. extend h F\<squnion>G \<in> X'
==> F\<squnion>project h (C G) G \<in> X"
and extend: "!!G. [| F\<squnion>project h (C G) G \<in> Y |]
==> extend h F\<squnion>G \<in> Y'"
shows "extend h F \<in> X' guarantees Y'"
apply (rule xguary [THEN guaranteesD, THEN extend, THEN guaranteesI])
apply (blast intro: closed subset_closed_ok_extend_imp_ok_project)
apply (erule project)
done
lemma (in Extend) project_guarantees:
"[| F \<in> X guarantees Y; subset_closed (AllowedActs F);
projecting C h F X' X; extending C h F Y' Y |]
==> extend h F \<in> X' guarantees Y'"
apply (rule guaranteesI)
apply (auto simp add: guaranteesD projecting_def extending_def
subset_closed_ok_extend_imp_ok_project)
done
(*It seems that neither "guarantees" law can be proved from the other.*)
subsection{*guarantees corollaries*}
subsubsection{*Some could be deleted: the required versions are easy to prove*}
lemma (in Extend) extend_guar_increasing:
"[| F \<in> UNIV guarantees increasing func;
subset_closed (AllowedActs F) |]
==> extend h F \<in> X' guarantees increasing (func o f)"
apply (erule project_guarantees)
apply (rule_tac [3] extending_increasing)
apply (rule_tac [2] projecting_UNIV, auto)
done
lemma (in Extend) extend_guar_Increasing:
"[| F \<in> UNIV guarantees Increasing func;
subset_closed (AllowedActs F) |]
==> extend h F \<in> X' guarantees Increasing (func o f)"
apply (erule project_guarantees)
apply (rule_tac [3] extending_Increasing)
apply (rule_tac [2] projecting_UNIV, auto)
done
lemma (in Extend) extend_guar_Always:
"[| F \<in> Always A guarantees Always B;
subset_closed (AllowedActs F) |]
==> extend h F
\<in> Always(extend_set h A) guarantees Always(extend_set h B)"
apply (erule project_guarantees)
apply (rule_tac [3] extending_Always)
apply (rule_tac [2] projecting_Always, auto)
done
subsubsection{*Guarantees with a leadsTo postcondition*}
lemma (in Extend) project_leadsTo_D:
"F\<squnion>project h UNIV G \<in> A leadsTo B
==> extend h F\<squnion>G \<in> (extend_set h A) leadsTo (extend_set h B)"
apply (rule_tac C1 = UNIV in project_leadsTo_D_lemma [THEN leadsTo_weaken], auto)
done
lemma (in Extend) project_LeadsTo_D:
"F\<squnion>project h (reachable (extend h F\<squnion>G)) G \<in> A LeadsTo B
==> extend h F\<squnion>G \<in> (extend_set h A) LeadsTo (extend_set h B)"
apply (rule refl [THEN Join_project_LeadsTo], auto)
done
lemma (in Extend) extending_leadsTo:
"extending (%G. UNIV) h F
(extend_set h A leadsTo extend_set h B) (A leadsTo B)"
apply (unfold extending_def)
apply (blast intro: project_leadsTo_D)
done
lemma (in Extend) extending_LeadsTo:
"extending (%G. reachable (extend h F\<squnion>G)) h F
(extend_set h A LeadsTo extend_set h B) (A LeadsTo B)"
apply (unfold extending_def)
apply (blast intro: project_LeadsTo_D)
done
end