(* Title: ZF/InfDatatype.ML
ID: $Id$
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1994 University of Cambridge
*)
header{*Infinite-Branching Datatype Definitions*}
theory InfDatatype imports Datatype_ZF Univ Finite Cardinal_AC begin
lemmas fun_Limit_VfromE =
Limit_VfromE [OF apply_funtype InfCard_csucc [THEN InfCard_is_Limit]]
lemma fun_Vcsucc_lemma:
"[| f: D -> Vfrom(A,csucc(K)); |D| le K; InfCard(K) |]
==> EX j. f: D -> Vfrom(A,j) & j < csucc(K)"
apply (rule_tac x = "\<Union>d\<in>D. LEAST i. f`d : Vfrom (A,i) " in exI)
apply (rule conjI)
apply (rule_tac [2] le_UN_Ord_lt_csucc)
apply (rule_tac [4] ballI, erule_tac [4] fun_Limit_VfromE, simp_all)
prefer 2 apply (fast elim: Least_le [THEN lt_trans1] ltE)
apply (rule Pi_type)
apply (rename_tac [2] d)
apply (erule_tac [2] fun_Limit_VfromE, simp_all)
apply (subgoal_tac "f`d : Vfrom (A, LEAST i. f`d : Vfrom (A,i))")
apply (erule Vfrom_mono [OF subset_refl UN_upper, THEN subsetD])
apply assumption
apply (fast elim: LeastI ltE)
done
lemma subset_Vcsucc:
"[| D <= Vfrom(A,csucc(K)); |D| le K; InfCard(K) |]
==> EX j. D <= Vfrom(A,j) & j < csucc(K)"
by (simp add: subset_iff_id fun_Vcsucc_lemma)
(*Version for arbitrary index sets*)
lemma fun_Vcsucc:
"[| |D| le K; InfCard(K); D <= Vfrom(A,csucc(K)) |] ==>
D -> Vfrom(A,csucc(K)) <= Vfrom(A,csucc(K))"
apply (safe dest!: fun_Vcsucc_lemma subset_Vcsucc)
apply (rule Vfrom [THEN ssubst])
apply (drule fun_is_rel)
(*This level includes the function, and is below csucc(K)*)
apply (rule_tac a1 = "succ (succ (j Un ja))" in UN_I [THEN UnI2])
apply (blast intro: ltD InfCard_csucc InfCard_is_Limit Limit_has_succ
Un_least_lt)
apply (erule subset_trans [THEN PowI])
apply (fast intro: Pair_in_Vfrom Vfrom_UnI1 Vfrom_UnI2)
done
lemma fun_in_Vcsucc:
"[| f: D -> Vfrom(A, csucc(K)); |D| le K; InfCard(K);
D <= Vfrom(A,csucc(K)) |]
==> f: Vfrom(A,csucc(K))"
by (blast intro: fun_Vcsucc [THEN subsetD])
(*Remove <= from the rule above*)
lemmas fun_in_Vcsucc' = fun_in_Vcsucc [OF _ _ _ subsetI]
(** Version where K itself is the index set **)
lemma Card_fun_Vcsucc:
"InfCard(K) ==> K -> Vfrom(A,csucc(K)) <= Vfrom(A,csucc(K))"
apply (frule InfCard_is_Card [THEN Card_is_Ord])
apply (blast del: subsetI
intro: fun_Vcsucc Ord_cardinal_le i_subset_Vfrom
lt_csucc [THEN leI, THEN le_imp_subset, THEN subset_trans])
done
lemma Card_fun_in_Vcsucc:
"[| f: K -> Vfrom(A, csucc(K)); InfCard(K) |] ==> f: Vfrom(A,csucc(K))"
by (blast intro: Card_fun_Vcsucc [THEN subsetD])
lemma Limit_csucc: "InfCard(K) ==> Limit(csucc(K))"
by (erule InfCard_csucc [THEN InfCard_is_Limit])
lemmas Pair_in_Vcsucc = Pair_in_VLimit [OF _ _ Limit_csucc]
lemmas Inl_in_Vcsucc = Inl_in_VLimit [OF _ Limit_csucc]
lemmas Inr_in_Vcsucc = Inr_in_VLimit [OF _ Limit_csucc]
lemmas zero_in_Vcsucc = Limit_csucc [THEN zero_in_VLimit]
lemmas nat_into_Vcsucc = nat_into_VLimit [OF _ Limit_csucc]
(*For handling Cardinals of the form (nat Un |X|) *)
lemmas InfCard_nat_Un_cardinal = InfCard_Un [OF InfCard_nat Card_cardinal]
lemmas le_nat_Un_cardinal =
Un_upper2_le [OF Ord_nat Card_cardinal [THEN Card_is_Ord]]
lemmas UN_upper_cardinal = UN_upper [THEN subset_imp_lepoll, THEN lepoll_imp_Card_le]
(*The new version of Data_Arg.intrs, declared in Datatype.ML*)
lemmas Data_Arg_intros =
SigmaI InlI InrI
Pair_in_univ Inl_in_univ Inr_in_univ
zero_in_univ A_into_univ nat_into_univ UnCI
(*For most K-branching datatypes with domain Vfrom(A, csucc(K)) *)
lemmas inf_datatype_intros =
InfCard_nat InfCard_nat_Un_cardinal
Pair_in_Vcsucc Inl_in_Vcsucc Inr_in_Vcsucc
zero_in_Vcsucc A_into_Vfrom nat_into_Vcsucc
Card_fun_in_Vcsucc fun_in_Vcsucc' UN_I
end