(* Title: HOL/Library/Sum_of_Squares/positivstellensatz_tools.ML
Author: Philipp Meyer, TU Muenchen
Functions for generating a certificate from a positivstellensatz and vice
versa.
*)
signature POSITIVSTELLENSATZ_TOOLS =
sig
val pss_tree_to_cert : RealArith.pss_tree -> string
val cert_to_pss_tree : Proof.context -> string -> RealArith.pss_tree
end
structure PositivstellensatzTools : POSITIVSTELLENSATZ_TOOLS =
struct
(*** certificate generation ***)
fun string_of_rat r =
let
val (nom, den) = Rat.quotient_of_rat r
in
if den = 1 then string_of_int nom
else string_of_int nom ^ "/" ^ string_of_int den
end
(* map polynomials to strings *)
fun string_of_varpow x k =
let
val term = term_of x
val name = case term of
Free (n, _) => n
| _ => error "Term in monomial not free variable"
in
if k = 1 then name else name ^ "^" ^ string_of_int k
end
fun string_of_monomial m =
if FuncUtil.Ctermfunc.is_empty m then "1"
else
let
val m' = FuncUtil.dest_monomial m
val vps = fold_rev (fn (x,k) => cons (string_of_varpow x k)) m' []
in foldr1 (fn (s, t) => s ^ "*" ^ t) vps
end
fun string_of_cmonomial (m,c) =
if FuncUtil.Ctermfunc.is_empty m then string_of_rat c
else if c = Rat.one then string_of_monomial m
else (string_of_rat c) ^ "*" ^ (string_of_monomial m);
fun string_of_poly p =
if FuncUtil.Monomialfunc.is_empty p then "0"
else
let
val cms = map string_of_cmonomial
(sort (prod_ord FuncUtil.monomial_order (K EQUAL)) (FuncUtil.Monomialfunc.dest p))
in foldr1 (fn (t1, t2) => t1 ^ " + " ^ t2) cms
end;
fun pss_to_cert (RealArith.Axiom_eq i) = "A=" ^ string_of_int i
| pss_to_cert (RealArith.Axiom_le i) = "A<=" ^ string_of_int i
| pss_to_cert (RealArith.Axiom_lt i) = "A<" ^ string_of_int i
| pss_to_cert (RealArith.Rational_eq r) = "R=" ^ string_of_rat r
| pss_to_cert (RealArith.Rational_le r) = "R<=" ^ string_of_rat r
| pss_to_cert (RealArith.Rational_lt r) = "R<" ^ string_of_rat r
| pss_to_cert (RealArith.Square p) = "[" ^ string_of_poly p ^ "]^2"
| pss_to_cert (RealArith.Eqmul (p, pss)) = "([" ^ string_of_poly p ^ "] * " ^ pss_to_cert pss ^ ")"
| pss_to_cert (RealArith.Sum (pss1, pss2)) = "(" ^ pss_to_cert pss1 ^ " + " ^ pss_to_cert pss2 ^ ")"
| pss_to_cert (RealArith.Product (pss1, pss2)) = "(" ^ pss_to_cert pss1 ^ " * " ^ pss_to_cert pss2 ^ ")"
fun pss_tree_to_cert RealArith.Trivial = "()"
| pss_tree_to_cert (RealArith.Cert pss) = "(" ^ pss_to_cert pss ^ ")"
| pss_tree_to_cert (RealArith.Branch (t1, t2)) = "(" ^ pss_tree_to_cert t1 ^ " & " ^ pss_tree_to_cert t2 ^ ")"
(*** certificate parsing ***)
(* basic parser *)
val str = Scan.this_string
val number = Scan.repeat1 (Scan.one Symbol.is_ascii_digit >>
(fn s => ord s - ord "0")) >>
foldl1 (fn (n, d) => n * 10 + d)
val nat = number
val int = Scan.optional (str "~" >> K ~1) 1 -- nat >> op *;
val rat = int --| str "/" -- int >> Rat.rat_of_quotient
val rat_int = rat || int >> Rat.rat_of_int
(* polynomial parser *)
fun repeat_sep s f = f ::: Scan.repeat (str s |-- f)
val parse_id = Scan.one Symbol.is_letter ::: Scan.many Symbol.is_letdig >> implode
fun parse_varpow ctxt = parse_id -- Scan.optional (str "^" |-- nat) 1 >>
(fn (x, k) => (cterm_of (Proof_Context.theory_of ctxt) (Free (x, @{typ real})), k))
fun parse_monomial ctxt = repeat_sep "*" (parse_varpow ctxt) >>
(fn xs => fold FuncUtil.Ctermfunc.update xs FuncUtil.Ctermfunc.empty)
fun parse_cmonomial ctxt =
rat_int --| str "*" -- (parse_monomial ctxt) >> swap ||
(parse_monomial ctxt) >> (fn m => (m, Rat.one)) ||
rat_int >> (fn r => (FuncUtil.Ctermfunc.empty, r))
fun parse_poly ctxt = repeat_sep "+" (parse_cmonomial ctxt) >>
(fn xs => fold FuncUtil.Monomialfunc.update xs FuncUtil.Monomialfunc.empty)
(* positivstellensatz parser *)
val parse_axiom =
(str "A=" |-- int >> RealArith.Axiom_eq) ||
(str "A<=" |-- int >> RealArith.Axiom_le) ||
(str "A<" |-- int >> RealArith.Axiom_lt)
val parse_rational =
(str "R=" |-- rat_int >> RealArith.Rational_eq) ||
(str "R<=" |-- rat_int >> RealArith.Rational_le) ||
(str "R<" |-- rat_int >> RealArith.Rational_lt)
fun parse_cert ctxt input =
let
val pc = parse_cert ctxt
val pp = parse_poly ctxt
in
(parse_axiom ||
parse_rational ||
str "[" |-- pp --| str "]^2" >> RealArith.Square ||
str "([" |-- pp --| str "]*" -- pc --| str ")" >> RealArith.Eqmul ||
str "(" |-- pc --| str "*" -- pc --| str ")" >> RealArith.Product ||
str "(" |-- pc --| str "+" -- pc --| str ")" >> RealArith.Sum) input
end
fun parse_cert_tree ctxt input =
let
val pc = parse_cert ctxt
val pt = parse_cert_tree ctxt
in
(str "()" >> K RealArith.Trivial ||
str "(" |-- pc --| str ")" >> RealArith.Cert ||
str "(" |-- pt --| str "&" -- pt --| str ")" >> RealArith.Branch) input
end
(* scanner *)
fun cert_to_pss_tree ctxt input_str =
Symbol.scanner "Bad certificate" (parse_cert_tree ctxt)
(filter_out Symbol.is_blank (Symbol.explode input_str))
end