theory Lambda_Example
imports "~~/src/HOL/Library/Code_Prolog"
begin
subsection {* Lambda *}
datatype type =
Atom nat
| Fun type type (infixr "\<Rightarrow>" 200)
datatype dB =
Var nat
| App dB dB (infixl "\<degree>" 200)
| Abs type dB
primrec
nth_el :: "'a list \<Rightarrow> nat \<Rightarrow> 'a option" ("_\<langle>_\<rangle>" [90, 0] 91)
where
"[]\<langle>i\<rangle> = None"
| "(x # xs)\<langle>i\<rangle> = (case i of 0 \<Rightarrow> Some x | Suc j \<Rightarrow> xs \<langle>j\<rangle>)"
inductive nth_el1 :: "'a list \<Rightarrow> nat \<Rightarrow> 'a \<Rightarrow> bool"
where
"nth_el1 (x # xs) 0 x"
| "nth_el1 xs i y \<Longrightarrow> nth_el1 (x # xs) (Suc i) y"
inductive typing :: "type list \<Rightarrow> dB \<Rightarrow> type \<Rightarrow> bool" ("_ \<turnstile> _ : _" [50, 50, 50] 50)
where
Var [intro!]: "nth_el1 env x T \<Longrightarrow> env \<turnstile> Var x : T"
| Abs [intro!]: "T # env \<turnstile> t : U \<Longrightarrow> env \<turnstile> Abs T t : (T \<Rightarrow> U)"
| App [intro!]: "env \<turnstile> s : U \<Rightarrow> T \<Longrightarrow> env \<turnstile> t : T \<Longrightarrow> env \<turnstile> (s \<degree> t) : U"
primrec
lift :: "[dB, nat] => dB"
where
"lift (Var i) k = (if i < k then Var i else Var (i + 1))"
| "lift (s \<degree> t) k = lift s k \<degree> lift t k"
| "lift (Abs T s) k = Abs T (lift s (k + 1))"
primrec pred :: "nat => nat"
where
"pred (Suc i) = i"
primrec
subst :: "[dB, dB, nat] => dB" ("_[_'/_]" [300, 0, 0] 300)
where
subst_Var: "(Var i)[s/k] =
(if k < i then Var (pred i) else if i = k then s else Var i)"
| subst_App: "(t \<degree> u)[s/k] = t[s/k] \<degree> u[s/k]"
| subst_Abs: "(Abs T t)[s/k] = Abs T (t[lift s 0 / k+1])"
inductive beta :: "[dB, dB] => bool" (infixl "\<rightarrow>\<^sub>\<beta>" 50)
where
beta [simp, intro!]: "Abs T s \<degree> t \<rightarrow>\<^sub>\<beta> s[t/0]"
| appL [simp, intro!]: "s \<rightarrow>\<^sub>\<beta> t ==> s \<degree> u \<rightarrow>\<^sub>\<beta> t \<degree> u"
| appR [simp, intro!]: "s \<rightarrow>\<^sub>\<beta> t ==> u \<degree> s \<rightarrow>\<^sub>\<beta> u \<degree> t"
| abs [simp, intro!]: "s \<rightarrow>\<^sub>\<beta> t ==> Abs T s \<rightarrow>\<^sub>\<beta> Abs T t"
subsection {* Inductive definitions for ordering on naturals *}
inductive less_nat
where
"less_nat 0 (Suc y)"
| "less_nat x y ==> less_nat (Suc x) (Suc y)"
lemma less_nat[code_pred_inline]:
"x < y = less_nat x y"
apply (rule iffI)
apply (induct x arbitrary: y)
apply (case_tac y) apply (auto intro: less_nat.intros)
apply (case_tac y)
apply (auto intro: less_nat.intros)
apply (induct rule: less_nat.induct)
apply auto
done
lemma [code_pred_inline]: "(x::nat) + 1 = Suc x"
by simp
section {* Manual setup to find counterexample *}
setup {* Context.theory_map (Quickcheck.add_tester ("prolog", (Code_Prolog.active, Code_Prolog.test_goals))) *}
setup {* Code_Prolog.map_code_options (K
{ ensure_groundness = true,
limit_globally = NONE,
limited_types = [(@{typ nat}, 1), (@{typ "type"}, 1), (@{typ dB}, 1), (@{typ "type list"}, 1)],
limited_predicates = [(["typing"], 2), (["nthel1"], 2)],
replacing = [(("typing", "limited_typing"), "quickcheck"),
(("nthel1", "limited_nthel1"), "lim_typing")],
manual_reorder = []}) *}
lemma
"\<Gamma> \<turnstile> t : U \<Longrightarrow> t \<rightarrow>\<^sub>\<beta> t' \<Longrightarrow> \<Gamma> \<turnstile> t' : U"
quickcheck[tester = prolog, iterations = 1, expect = counterexample]
oops
text {* Verifying that the found counterexample really is one by means of a proof *}
lemma
assumes
"t' = Var 0"
"U = Atom 0"
"\<Gamma> = [Atom 1]"
"t = App (Abs (Atom 0) (Var 1)) (Var 0)"
shows
"\<Gamma> \<turnstile> t : U"
"t \<rightarrow>\<^sub>\<beta> t'"
"\<not> \<Gamma> \<turnstile> t' : U"
proof -
from assms show "\<Gamma> \<turnstile> t : U"
by (auto intro!: typing.intros nth_el1.intros)
next
from assms have "t \<rightarrow>\<^sub>\<beta> (Var 1)[Var 0/0]"
by (auto simp only: intro: beta.intros)
moreover
from assms have "(Var 1)[Var 0/0] = t'" by simp
ultimately show "t \<rightarrow>\<^sub>\<beta> t'" by simp
next
from assms show "\<not> \<Gamma> \<turnstile> t' : U"
by (auto elim: typing.cases nth_el1.cases)
qed
end