(* Title: Pure/pure_thy.ML
Author: Markus Wenzel, TU Muenchen
Theorem storage. Pure theory syntax and logical content.
*)
signature PURE_THY =
sig
val facts_of: theory -> Facts.T
val intern_fact: theory -> xstring -> string
val defined_fact: theory -> string -> bool
val hide_fact: bool -> string -> theory -> theory
val join_proofs: theory -> exn list
val cancel_proofs: theory -> unit
val get_fact: Context.generic -> theory -> Facts.ref -> thm list
val get_thms: theory -> xstring -> thm list
val get_thm: theory -> xstring -> thm
val all_thms_of: theory -> (string * thm) list
val map_facts: ('a -> 'b) -> ('c * ('a list * 'd) list) list -> ('c * ('b list * 'd) list) list
val burrow_fact: ('a list -> 'b list) -> ('a list * 'c) list -> ('b list * 'c) list
val burrow_facts: ('a list -> 'b list) ->
('c * ('a list * 'd) list) list -> ('c * ('b list * 'd) list) list
val name_multi: string -> 'a list -> (string * 'a) list
val name_thm: bool -> bool -> Position.T -> string -> thm -> thm
val name_thms: bool -> bool -> Position.T -> string -> thm list -> thm list
val name_thmss: bool -> Position.T -> string -> (thm list * 'a) list -> (thm list * 'a) list
val store_thms: binding * thm list -> theory -> thm list * theory
val store_thm: binding * thm -> theory -> thm * theory
val store_thm_open: binding * thm -> theory -> thm * theory
val add_thms: ((binding * thm) * attribute list) list -> theory -> thm list * theory
val add_thm: (binding * thm) * attribute list -> theory -> thm * theory
val add_thmss: ((binding * thm list) * attribute list) list -> theory -> thm list list * theory
val add_thms_dynamic: binding * (Context.generic -> thm list) -> theory -> theory
val note_thmss: string -> (Thm.binding *
(thm list * attribute list) list) list -> theory -> (string * thm list) list * theory
val note_thmss_grouped: string -> string -> (Thm.binding *
(thm list * attribute list) list) list -> theory -> (string * thm list) list * theory
val add_axioms: ((binding * term) * attribute list) list -> theory -> thm list * theory
val add_axioms_cmd: ((bstring * string) * attribute list) list -> theory -> thm list * theory
val add_defs: bool -> ((binding * term) * attribute list) list ->
theory -> thm list * theory
val add_defs_unchecked: bool -> ((binding * term) * attribute list) list ->
theory -> thm list * theory
val add_defs_cmd: bool -> ((bstring * string) * attribute list) list ->
theory -> thm list * theory
val add_defs_unchecked_cmd: bool -> ((bstring * string) * attribute list) list ->
theory -> thm list * theory
val old_appl_syntax: theory -> bool
val old_appl_syntax_setup: theory -> theory
end;
structure PureThy: PURE_THY =
struct
(*** stored facts ***)
(** theory data **)
structure FactsData = TheoryDataFun
(
type T = Facts.T * (unit lazy list * Task_Queue.group list);
val empty = (Facts.empty, ([], []));
val copy = I;
fun extend (facts, _) = (facts, ([], []));
fun merge _ ((facts1, _), (facts2, _)) = (Facts.merge (facts1, facts2), ([], []));
);
(* facts *)
val facts_of = #1 o FactsData.get;
val intern_fact = Facts.intern o facts_of;
val defined_fact = Facts.defined o facts_of;
fun hide_fact fully name = FactsData.map (apfst (Facts.hide fully name));
(* proofs *)
fun lazy_proof thm = Lazy.lazy (fn () => Thm.join_proof thm);
fun join_proofs thy =
map_filter (Exn.get_exn o Lazy.force_result) (rev (#1 (#2 (FactsData.get thy))));
fun cancel_proofs thy = List.app Future.cancel_group (#2 (#2 (FactsData.get thy)));
(** retrieve theorems **)
fun get_fact context thy xthmref =
let
val xname = Facts.name_of_ref xthmref;
val pos = Facts.pos_of_ref xthmref;
val name = intern_fact thy xname;
val res = Facts.lookup context (facts_of thy) name;
val _ = Theory.check_thy thy;
in
(case res of
NONE => error ("Unknown fact " ^ quote name ^ Position.str_of pos)
| SOME (static, ths) =>
(Position.report ((if static then Markup.fact else Markup.dynamic_fact) name) pos;
Facts.select xthmref (map (Thm.transfer thy) ths)))
end;
fun get_thms thy = get_fact (Context.Theory thy) thy o Facts.named;
fun get_thm thy name = Facts.the_single name (get_thms thy name);
fun all_thms_of thy =
Facts.fold_static (fn (_, ths) => append (map (`(Thm.get_name_hint)) ths)) (facts_of thy) [];
(** store theorems **)
(* fact specifications *)
fun map_facts f = map (apsnd (map (apfst (map f))));
fun burrow_fact f = split_list #>> burrow f #> op ~~;
fun burrow_facts f = split_list ##> burrow (burrow_fact f) #> op ~~;
(* naming *)
fun name_multi name [x] = [(name, x)]
| name_multi "" xs = map (pair "") xs
| name_multi name xs = map_index (fn (i, x) => (name ^ "_" ^ string_of_int (i + 1), x)) xs;
fun name_thm pre official pos name thm = thm
|> (if Thm.get_name thm <> "" andalso pre orelse not official then I else Thm.put_name name)
|> (if Thm.has_name_hint thm andalso pre orelse name = "" then I else Thm.put_name_hint name)
|> Thm.default_position pos
|> Thm.default_position (Position.thread_data ());
fun name_thms pre official pos name xs =
map (uncurry (name_thm pre official pos)) (name_multi name xs);
fun name_thmss official pos name fact =
burrow_fact (name_thms true official pos name) fact;
(* enter_thms *)
fun enter_proofs (thy, thms) =
(FactsData.map (apsnd (fn (proofs, groups) =>
(fold (cons o lazy_proof) thms proofs, fold Thm.pending_groups thms groups))) thy, thms);
fun enter_thms pre_name post_name app_att (b, thms) thy =
if Binding.is_empty b
then swap (enter_proofs (app_att (thy, thms)))
else
let
val naming = Sign.naming_of thy;
val name = NameSpace.full_name naming b;
val (thy', thms') =
enter_proofs (apsnd (post_name name) (app_att (thy, pre_name name thms)));
val thms'' = map (Thm.transfer thy') thms';
val thy'' = thy' |> (FactsData.map o apfst) (Facts.add_global naming (b, thms'') #> snd);
in (thms'', thy'') end;
(* store_thm(s) *)
fun store_thms (b, thms) = enter_thms (name_thms true true Position.none)
(name_thms false true Position.none) I (b, thms);
fun store_thm (b, th) = store_thms (b, [th]) #>> the_single;
fun store_thm_open (b, th) =
enter_thms (name_thms true false Position.none) (name_thms false false Position.none) I
(b, [th]) #>> the_single;
(* add_thms(s) *)
fun add_thms_atts pre_name ((b, thms), atts) =
enter_thms pre_name (name_thms false true Position.none)
(Library.foldl_map (Thm.theory_attributes atts)) (b, thms);
fun gen_add_thmss pre_name =
fold_map (add_thms_atts pre_name);
fun gen_add_thms pre_name args =
apfst (map hd) o gen_add_thmss pre_name (map (apfst (apsnd single)) args);
val add_thmss = gen_add_thmss (name_thms true true Position.none);
val add_thms = gen_add_thms (name_thms true true Position.none);
val add_thm = yield_singleton add_thms;
(* add_thms_dynamic *)
fun add_thms_dynamic (b, f) thy = thy
|> (FactsData.map o apfst)
(Facts.add_dynamic (Sign.naming_of thy) (b, f) #> snd);
(* note_thmss *)
local
fun gen_note_thmss tag = fold_map (fn ((b, more_atts), ths_atts) => fn thy =>
let
val pos = Binding.pos_of b;
val name = Sign.full_name thy b;
val _ = Position.report (Markup.fact_decl name) pos;
fun app (x, (ths, atts)) = Library.foldl_map (Thm.theory_attributes atts) (x, ths);
val (thms, thy') = thy |> enter_thms
(name_thmss true pos) (name_thms false true pos) (apsnd flat o Library.foldl_map app)
(b, map (fn (ths, atts) => (ths, surround tag (atts @ more_atts))) ths_atts);
in ((name, thms), thy') end);
in
fun note_thmss k = gen_note_thmss (Thm.kind k);
fun note_thmss_grouped k g = gen_note_thmss (Thm.kind k #> Thm.group g);
end;
(* store axioms as theorems *)
local
fun get_ax thy (b, _) = Thm.axiom thy (Sign.full_name thy b);
fun get_axs thy named_axs = map (Thm.forall_elim_vars 0 o get_ax thy) named_axs;
fun add_axm prep_b add = fold_map (fn ((b, ax), atts) => fn thy =>
let
val named_ax = [(b, ax)];
val thy' = add named_ax thy;
val thm = hd (get_axs thy' ((map o apfst) prep_b named_ax));
in apfst hd (gen_add_thms (K I) [((prep_b b, thm), atts)] thy') end);
in
val add_defs = add_axm I o Theory.add_defs_i false;
val add_defs_unchecked = add_axm I o Theory.add_defs_i true;
val add_axioms = add_axm I Theory.add_axioms_i;
val add_defs_cmd = add_axm Binding.name o Theory.add_defs false;
val add_defs_unchecked_cmd = add_axm Binding.name o Theory.add_defs true;
val add_axioms_cmd = add_axm Binding.name Theory.add_axioms;
end;
(*** Pure theory syntax and logical content ***)
val typ = SimpleSyntax.read_typ;
val term = SimpleSyntax.read_term;
val prop = SimpleSyntax.read_prop;
val typeT = Syntax.typeT;
val spropT = Syntax.spropT;
(* application syntax variants *)
val appl_syntax =
[("_appl", typ "('b => 'a) => args => logic", Mixfix ("(1_/(1'(_')))", [1000, 0], 1000)),
("_appl", typ "('b => 'a) => args => aprop", Mixfix ("(1_/(1'(_')))", [1000, 0], 1000))];
val applC_syntax =
[("", typ "'a => cargs", Delimfix "_"),
("_cargs", typ "'a => cargs => cargs", Mixfix ("_/ _", [1000, 1000], 1000)),
("_applC", typ "('b => 'a) => cargs => logic", Mixfix ("(1_/ _)", [1000, 1000], 999)),
("_applC", typ "('b => 'a) => cargs => aprop", Mixfix ("(1_/ _)", [1000, 1000], 999))];
structure OldApplSyntax = TheoryDataFun
(
type T = bool;
val empty = false;
val copy = I;
val extend = I;
fun merge _ (b1, b2) : T =
if b1 = b2 then b1
else error "Cannot merge theories with different application syntax";
);
val old_appl_syntax = OldApplSyntax.get;
val old_appl_syntax_setup =
OldApplSyntax.put true #>
Sign.del_modesyntax_i Syntax.mode_default applC_syntax #>
Sign.add_syntax_i appl_syntax;
(* main content *)
val _ = Context.>> (Context.map_theory
(OldApplSyntax.init #>
Sign.add_types
[("fun", 2, NoSyn),
("prop", 0, NoSyn),
("itself", 1, NoSyn),
("dummy", 0, NoSyn)]
#> Sign.add_nonterminals Syntax.basic_nonterms
#> Sign.add_syntax_i
[("_lambda", typ "pttrns => 'a => logic", Mixfix ("(3%_./ _)", [0, 3], 3)),
("_abs", typ "'a", NoSyn),
("", typ "'a => args", Delimfix "_"),
("_args", typ "'a => args => args", Delimfix "_,/ _"),
("", typ "id => idt", Delimfix "_"),
("_idtdummy", typ "idt", Delimfix "'_"),
("_idtyp", typ "id => type => idt", Mixfix ("_::_", [], 0)),
("_idtypdummy", typ "type => idt", Mixfix ("'_()::_", [], 0)),
("", typ "idt => idt", Delimfix "'(_')"),
("", typ "idt => idts", Delimfix "_"),
("_idts", typ "idt => idts => idts", Mixfix ("_/ _", [1, 0], 0)),
("", typ "idt => pttrn", Delimfix "_"),
("", typ "pttrn => pttrns", Delimfix "_"),
("_pttrns", typ "pttrn => pttrns => pttrns", Mixfix ("_/ _", [1, 0], 0)),
("", typ "aprop => aprop", Delimfix "'(_')"),
("", typ "id => aprop", Delimfix "_"),
("", typ "longid => aprop", Delimfix "_"),
("", typ "var => aprop", Delimfix "_"),
("_DDDOT", typ "aprop", Delimfix "..."),
("_aprop", typ "aprop => prop", Delimfix "PROP _"),
("_asm", typ "prop => asms", Delimfix "_"),
("_asms", typ "prop => asms => asms", Delimfix "_;/ _"),
("_bigimpl", typ "asms => prop => prop", Mixfix ("((3[| _ |])/ ==> _)", [0, 1], 1)),
("_ofclass", typ "type => logic => prop", Delimfix "(1OFCLASS/(1'(_,/ _')))"),
("_mk_ofclass", typ "dummy", NoSyn),
("_TYPE", typ "type => logic", Delimfix "(1TYPE/(1'(_')))"),
("", typ "id => logic", Delimfix "_"),
("", typ "longid => logic", Delimfix "_"),
("", typ "var => logic", Delimfix "_"),
("_DDDOT", typ "logic", Delimfix "..."),
("_constify", typ "num => num_const", Delimfix "_"),
("_constify", typ "float_token => float_const", Delimfix "_"),
("_indexnum", typ "num_const => index", Delimfix "\\<^sub>_"),
("_index", typ "logic => index", Delimfix "(00\\<^bsub>_\\<^esub>)"),
("_indexdefault", typ "index", Delimfix ""),
("_indexvar", typ "index", Delimfix "'\\<index>"),
("_struct", typ "index => logic", Mixfix ("\\<struct>_", [1000], 1000)),
("==>", typ "prop => prop => prop", Delimfix "op ==>"),
(Term.dummy_patternN, typ "aprop", Delimfix "'_"),
("_sort_constraint", typ "type => prop", Delimfix "(1SORT'_CONSTRAINT/(1'(_')))"),
("Pure.term", typ "logic => prop", Delimfix "TERM _"),
("Pure.conjunction", typ "prop => prop => prop", InfixrName ("&&&", 2))]
#> Sign.add_syntax_i applC_syntax
#> Sign.add_modesyntax_i (Symbol.xsymbolsN, true)
[("fun", typ "type => type => type", Mixfix ("(_/ \\<Rightarrow> _)", [1, 0], 0)),
("_bracket", typ "types => type => type", Mixfix ("([_]/ \\<Rightarrow> _)", [0, 0], 0)),
("_ofsort", typ "tid => sort => type", Mixfix ("_\\<Colon>_", [1000, 0], 1000)),
("_constrain", typ "logic => type => logic", Mixfix ("_\\<Colon>_", [4, 0], 3)),
("_constrain", [spropT, typeT] ---> spropT, Mixfix ("_\\<Colon>_", [4, 0], 3)),
("_idtyp", typ "id => type => idt", Mixfix ("_\\<Colon>_", [], 0)),
("_idtypdummy", typ "type => idt", Mixfix ("'_()\\<Colon>_", [], 0)),
("_type_constraint_", typ "'a", NoSyn),
("_lambda", typ "pttrns => 'a => logic", Mixfix ("(3\\<lambda>_./ _)", [0, 3], 3)),
("==", typ "'a => 'a => prop", InfixrName ("\\<equiv>", 2)),
("all_binder", typ "idts => prop => prop", Mixfix ("(3\\<And>_./ _)", [0, 0], 0)),
("==>", typ "prop => prop => prop", InfixrName ("\\<Longrightarrow>", 1)),
("_DDDOT", typ "aprop", Delimfix "\\<dots>"),
("_bigimpl", typ "asms => prop => prop", Mixfix ("((1\\<lbrakk>_\\<rbrakk>)/ \\<Longrightarrow> _)", [0, 1], 1)),
("_DDDOT", typ "logic", Delimfix "\\<dots>")]
#> Sign.add_modesyntax_i ("", false)
[("prop", typ "prop => prop", Mixfix ("_", [0], 0))]
#> Sign.add_modesyntax_i ("HTML", false)
[("_lambda", typ "pttrns => 'a => logic", Mixfix ("(3\\<lambda>_./ _)", [0, 3], 3))]
#> Sign.add_consts_i
[("==", typ "'a => 'a => prop", InfixrName ("==", 2)),
("==>", typ "prop => prop => prop", Mixfix ("(_/ ==> _)", [2, 1], 1)),
("all", typ "('a => prop) => prop", Binder ("!!", 0, 0)),
("prop", typ "prop => prop", NoSyn),
("TYPE", typ "'a itself", NoSyn),
(Term.dummy_patternN, typ "'a", Delimfix "'_")]
#> Theory.add_deps "==" ("==", typ "'a => 'a => prop") []
#> Theory.add_deps "==>" ("==>", typ "prop => prop => prop") []
#> Theory.add_deps "all" ("all", typ "('a => prop) => prop") []
#> Theory.add_deps "TYPE" ("TYPE", typ "'a itself") []
#> Theory.add_deps Term.dummy_patternN (Term.dummy_patternN, typ "'a") []
#> Sign.add_trfuns Syntax.pure_trfuns
#> Sign.add_trfunsT Syntax.pure_trfunsT
#> Sign.local_path
#> Sign.add_consts_i
[("term", typ "'a => prop", NoSyn),
("sort_constraint", typ "'a itself => prop", NoSyn),
("conjunction", typ "prop => prop => prop", NoSyn)]
#> (add_defs false o map Thm.no_attributes)
[(Binding.name "prop_def", prop "(CONST prop :: prop => prop) (A::prop) == A::prop"),
(Binding.name "term_def", prop "(CONST Pure.term :: 'a => prop) (x::'a) == (!!A::prop. A ==> A)"),
(Binding.name "sort_constraint_def",
prop "(CONST Pure.sort_constraint :: 'a itself => prop) (CONST TYPE :: 'a itself) ==\
\ (CONST Pure.term :: 'a itself => prop) (CONST TYPE :: 'a itself)"),
(Binding.name "conjunction_def", prop "(A &&& B) == (!!C::prop. (A ==> B ==> C) ==> C)")] #> snd
#> Sign.hide_const false "Pure.term"
#> Sign.hide_const false "Pure.sort_constraint"
#> Sign.hide_const false "Pure.conjunction"
#> add_thmss [((Binding.name "nothing", []), [])] #> snd
#> Theory.add_axioms_i ((map o apfst) Binding.name Proofterm.equality_axms)));
end;